MacBook Expansion—Designed for MacBook, 5-in-1 USBC hub adds 2x USB 3.0, combination audio port, Gigabit Ethernet, space for a MagSafe charger, and a USB4 / Thunderbolt 4 compatible USB-C port that can do anything your Mac’s native port can do, even 6K video
USB-C Fully Loaded—Compatible with Thunderbolt 4 and USB4, the USB-C port on this Type C hub has you covered. Up to 40Gbps data transfer, up to 100W pass-through charging to the host or 15W downstream charging, and support for a 6K 60Hz display
MagSafe Ready—Built to compliment your MacBook, USB C multiport adapter connects to MacBook’s 2x USB-C ports. Beyond 5 port expansion, the hub makes room for your MagSafe charger
Compatibility—MacBook USB C hub is compatible with MacBook Pro and MacBook Air systems with Apple Silicon CPUs and USB-C/USB4 ports. Not compatible with Windows, Chrome, Linux. Not compatible with laptop covers
2-Year Coverage, Lifetime Support—Every Plugable product, including this USB C hub multiport adapter, is covered against defects for 2 years and comes with lifetime support. If you ever have questions, contact our North American-based team - even before purchase
Designed for 14” and 16” MacBook Pro and M2 MacBook Air
Add 5 ports with space for MagSafe
Your MacBook was designed to “just work.” So when you add an accessory, you expect the same. And that’s what you get with the Plugable USB-C 5-in-1 Hub (AMS-5IN1E), designed for Apple MagSafe.
With no drivers to download or software to install, this adapter for MacBook pro and MacBook Air is ready for easy expansion. Just plug the AMS-5IN1E into the two USB-C ports on the side of your Mac for quick access to 2x USB 3.0 ports (5Gbps), perfect for a keyboard or legacy accessory. The full-featured USB-C port (40Gbps) can do anything you’d expect from one of your Mac’s USB-C ports, including extending your display up to 6K 60Hz. And of course, take advantage of the Gigabit Ethernet port for a strong, stable connection. It even has a combination audio port for good measure.
Compatible with M1 / M2 / M3 MacBook Pro as well as the M2 MacBook Air.
Precision engineered to be a clip-on MacBook Air and MacBook Pro USB C hub, it’s designed to fit snug, so it won’t work with a laptop case.
For MacBook
This MacBook Pro hub is designed for the 14” and 16” MacBook Pro and the M2 MacBook Air to add extra ports without sacrificing your MagSafe connection.
5-in-1
MacBook adapter multiport expansion with 2x USB 3.0, 1x USB-C (40Gbps), combination audio jack, Gigabit Ethernet.
Plug and Play
Just connect the USB-C hub to your Mac. No drivers or installation required.
Compatibility
Compatible with M1/M2/M3 MacBook Pro and M2 Air systems with Apple Silicon CPUs and USB-C/USB4 ports. Not compatible with laptop covers.
1.3 x 10.8 x 3.7 centimeters 0.5 x 4.3 x 1.5 inches
40 grams 1.4 ounces
AMS-5IN1E
Compatibility
The AMS-5IN1E is compatible with the following MacBook models:
2021 14" M1 MacBook Pro
2021 16" M1 MacBook Pro
2022 M2 MacBook Air
2023 14" M2 MacBook Pro
2023 16" M2 MacBook Pro
2023 14" M3 MacBook Pro
2023 16" M3 MacBook Pro
The hub will also work with non-MagSafe MacBook models with side-by-side USB-C ports.
This hub is not compatible with MacBook covers or cases.
Get Started
The AMS-5IN1E is plug-and-play, so no drivers are required! Simply connect the hub to the 2x USB-C ports on the left side of your MacBook.
Filter Help Articles and Frequent Questions by Category
Choose one or more filters within each category to narrow down the articles. Each selection will result in only displaying articles that include all of your choices.
Technically, the spacing between the two USB-C ports on MacBook's are consistent across all models, so the hub will still connect and function to the specifications of the USB-C ports. But note that the fitment may be affected as previous MacBook's had differing heights and angles that may cause the hub to interfere with the surface the MacBook is on.
With the AMS-5IN1E connected to the MacBook and nothing connected to the hub itself, the hub will consume less than 1W of power in its idle state, so you do not need to worry about the hub unnecessarily draining your battery while idle. Power consumption will increase and vary as peripherals are connected to the hub.
From our testing, it is recommended that you grab the cable portion as close to the MagSafe connector as possible and lift straight up. This will disconnect the MagSafe connector from the magnet on the MacBook and allow you to remove the charging cable without needing to remove the hub.
By default, macOS will not switch the audio input/output device to the AMS-5IN1E when it is connected for the first time, so you will have to manually change the audio input/output in the settings.
To change the input/output settings in macOS, simply navigate to SystemSettings, then to Sound, then select USB AUDIO SYSTEM under "Output" and "Input".
Once you do this the first time, the AMS-5IN1E should be the default audio device every time you connect a device to the 3.5 mm jack on the hub.
Well how about that, it looks like we don't have any articles matching your filters! Try removing one of your choices or clear the filters to show all articles.
This is the standard USB connection that most computers offered prior to the introduction of USB Type-C (USB-C). Even after the introduction of USB Type-C, this is still quite common.
It can provide data transfer rates up to the USB 3.1 Gen 2 (10 gbps) specification depending on the host and device, but does not directly support video in the way that USB-C Alternate Mode does. This limitation makes DisplayLink USB graphics adapters and docking stations ideal on systems that do not have USB-C, or in instances where more displays are needed beyond available video outputs of a PC.
This type of connection comes in a couple different styles depending on whether USB 3.0 and higher transfer rates are supported (bottom graphic). Usually this type of connection is used to plug into USB devices that do not have a fixed cable connected, such as USB docking stations, USB hubs, printers, and others.
One of the first connectors for charging a smartphone, wireless game controller (such as the Sixaxis and DualShock 3), and other small devices such as external hard drives. Not commonly used today, but is still used in some cases. Most devices using USB Mini B are using USB 2.0, though a USB 3.0 variant does exist. This specification also added USB On-The-Go (OTG) functionality, though it is more commonly implemented with Micro USB.
A smaller connector that serves many of the same uses as the Mini B connector, with added optional features such as Mobile High-Definition Link (MHL) to allow devices like smartphones to output video to larger displays without requiring a dedicated port for video output.
The larger variant of USB-B is most commonly used for external hard drives for higher 5Gbps transfer rates.
The most recent USB connection, USB Type-C (USB-C), represents a major change in what USB can do. The connector is smaller, can be connected in two orientations, is able to carry substantially more power and data, and can directly carry video signals of multiple types (HDMI, DisplayPort, etc.) Intel has also adapted the USB-C connector for use with Thunderbolt 3 and Thunderbolt 4.
It is important to note that while all Thunderbolt 3 and Thunderbolt 4 connections are USB-C, not all USB-C connections can be used with Thunderbolt 3 or Thunderbolt 4 devices.
Computer networking is a complex topic. In this article, we'll be taking a deep dive on the nuances of network performance for those who need some additional explanation while striving to be concise, and to educate users of various experience levels relating computer hardware and computer networking.
If you just need to know how to perform a network performance test/benchmark, jump down to configuring iPerf.
Core Network Concepts
LAN vs WAN
With regards to network performance, it is crucial to first separate whether an issue is with Wide Area Network (WAN) performance, or if the issue is with Local Area Network (LAN) performance.
Your LAN is essentially the network inside your home or business. Many homes use a combination modem/router device provided by their Internet Service Provider (ISP). In some cases, especially in businesses, you may have a separate modem and router, along with other equipment connecting to the router such as a network switch.
Your modem, and the connection it establishes to your ISP—whether through coaxial cable, fiber, phone lines, or long-range wireless—essentially marks the point between the WAN and the LAN. The connection your modem makes to your ISP is the WAN, and any devices you connect through your router behind that modem belong to the LAN.
Link Rate
Almost every type of connection your computer makes to any piece of hardware will have a link rate of some kind. The link rate establishes how fast data can possibly be transferred across any given connection, but it does not guarantee how fast the hardware on either end of the connection will actually transfer data.
The concept of link rates, and their related bottlenecks, is likely best conveyed by giving an example of what connections might be involved in transferring a file from one computer on your LAN to another.
800Mbps—The file source is a USB 3.0 thumb drive capable of 100MB/s (800Mbps) read/write.
480Mbps—The USB 3.0 thumb drive is plugged into a USB 2.0 port on the PC, which has a maximum throughput of 480Mbps
1000Mbps—PC1's Ethernet connection establishes 1Gbps (1000Mbps) link to the router via Ethernet
300Mbps—The router connects to a second PC (we'll refer to this as PC2) via Wi-Fi, and it has established a 300Mbps link to the Wi-Fi adapter on PC2
480Mbps—The Wi-Fi adapter on PC2 is connected via a USB 2.0 port. The link rate of the USB connection to PC2 is at 480Mbps
6000Mbps—PC2 is going to store the file on an internal hard drive with a link rate of 6Gbps
1600Mbps—File Destination: SATA hard drive capable of 200MB/s (1600Mbps) read/write.
Following this chain, we see that 300Mbps is the slowest link rate established. This means that, regardless of the link rates established elsewhere, the absolute maximum the data can possibly be transferred is 300Mbps.
if we were to change the Wi-Fi connection to a wired Ethernet connection capable of 1Gbps, our performance bottleneck would then become the USB 2.0 connection to the USB drive where the file is stored.
Ports and Interfaces
Interfaces
A network interface represents connections, whether wired or wireless, that are made to form a network between devices.
Ports
Some may refer to physical hardware connections as "ports". For the purposes of networking, ports are logical constructs that can also be referred to as "network ports". Each network interface has 65,535 of these logical ports. Each port on a network interface is a separate data connection.
Benchmarking Network Adapter Performance
To properly benchmark network adapter performance, we need to:
Use a simple LAN configuration
Eliminate bottlenecks, especially link rate bottlenecks
Websites like speedtest.net, fast.com, and other performance tools in your web browser are going to use your WAN connection, and are not appropriate for determining if a network adapter is working well.
Transferring files from one computer to another on your LAN is typically not the best way to benchmark a network adapter. File transfers are bottlenecked by a number of things, including performance limitations of the disk the data is on, and often times a lack of establishing parallel network connections to perform the task.
One of the most accurate ways to benchmark network performance on a LAN is by using iPerf . To more effectively benchmark network adapter performance, it is best to establish a point-to-point connection between two PCs, rather than connecting through a router or switch.
Next, you'll need to run iPerf in client mode, targeting the IP address of the server/interface where iPerf is running in server mode. Additionally, we'll run the test for 30 seconds using -t 30 and with four parallel connections using -P 4. Running 4 parallel connections is optimal for saturating a network link.
Windows
Open Command Prompt
Press Windows Key + R or + R, then enter cmd in the window that appears
Search the Start Menu for Command Prompt, and open it
Navigate Command Prompt to the directory the directory where iPerf is located
The cdcommand is for 'change directory'
If you have a folder named 'iperf' on your Windows desktop, you can reach it in command prompt with the command cd %USERPROFILE%\Desktop\iperf
Run iperf in client mode via Command Prompt (replace 192.168.0.200 with the IP address of the server/interface where iPerf is running in server mode)
iperf3.exe -c 192.168.0.200 -t 30 -P 4
macOS / Linux
Open Terminal
Run iPerf in client mode (replace 192.168.0.200 with the IP address of the server/interface where iPerf is running in server mode)
iperf3 -c 192.168.0.200 -t 30 -P 4
iPerf should start performing a network performance test. If the test fails to start, make sure that iPerf is not being blocked by your PC's/Mac's firewall.
Why iPerf is Ideal for Benchmarking
Unlike a file transfer, iPerf runs in memory on the PC and generates data to send using the CPU directly. This alleviates potential bottlenecks generated by storage devices, and allows you to explicitly control how many parallel connections are being used to transfer data rather than being unsure if parallel network connections are being used by other means.
Conclusion
There's a lot more to networking that isn't covered in this article, but we hope this helps explain enough to get an accurate measure of your network performance.
Whether you're on Windows, macOS, or Linux, it's common to add new audio devices to your computer.
Some examples of additional audio devices you may want to switch to include:
Bluetooth headsets, headphones, and speakers
Speakers built into a display, such as a TV or monitor
A USB sound card, digital audio converter (DAC), or analog to digital converter (ADC)
USB microphones
Audio jacks on a docking station
These steps don't apply to the Plugable Performance NIX HDMI Capture Card (USBC-CAP60).
Here are the steps that you need to set a new default audio recording or output device on different operating systems.
Set Audio Output Device
Set Audio Recording Device
Set Default Playback Device in Windows
Check that your device is properly connected, and that any necessary drivers are installed
It is also a good idea to make sure that your sound device is turned on, and that the device's volume control is not at the absolute minimum setting
Right-click on the speaker symbol in the Windows taskbar/system tray
Windows 7/8.x—Select Playback Devices. The Sound window will open with the Playback tab highlighted
Windows 10/11—Select Open Sound Settings then click the link under 'Related Settings' for Sound Control Panel, then click the Playback tab
Alternatively, after selecting Open Sound Settings, use the dropdowns under the Output header
Find your device in the window
A Plugable USB 3.0 docking station or sound-enabled display adapter will appear as Plugable Audio
A Plugable USB 3.0 Silicon Motion docking station or sound-enabled display adapter will appear as SMI USB Audio
A Plugable USB 2.0 docking station will appear as USB Multimedia Audio Device
A Plugable USB Audio adapter will appear as USB Audio Device
Right-click on the device you found in step 3 and select Set as Default Device. A check mark should appear next to your device, and sound should now play through it
A Plugable USB Audio adapter will appear as USB Audio Device
Set Default Playback Device in Linux
Ensure that you audio device is connected to the PC
If the audio device is self-powered, it is a good idea to make sure that it is powered on, and that the device's volume control is not at the absolute minimum setting
Launch the 'Settings' application in your distro
Go to the 'Sound' option
Find the dropdown for your 'Output Device', and change it to your preferred output device
For additional sound device controls, you may want to consider using Pulseaudio Volume Controls (package name pavucontrol)
Set Default Recording Device in Windows
Check that your device is properly connected, and that any necessary drivers are installed
It is also a good idea to make sure that your sound device is turned on, and that the device's volume control is not at the absolute minimum setting
Right-click on the speaker symbol in the Windows taskbar/system tray
Windows 7/8.x—Select Recording Devices. The Sound window will open with the Recording tab highlighted
Windows 10/11—Select Open Sound Settings then click the link under 'Related Settings' for Sound Control Panel, then click the Recording tab
Alternatively, after selecting Open Sound Settings, use the dropdowns under the Input header
Find your device in the window
A Plugable USB 3.0 DisplayLink docking station or sound-enabled display adapter will appear as Plugable Audio
A Plugable USB 2.0 docking station will appear as USB Multimedia Audio Device
A Plugable USB Audio adapter will appear as USB Audio Device
Right-click on the device you found in step 3 and select Set as Default Device. A check mark should appear next to your device, and sound should now play through it
A Plugable USB Audio adapter will appear as USB Audio Device
Set Default Recording Device in Linux
Ensure that you audio device is connected to the PC
If the audio device is self-powered, it is a good idea to make sure that it is powered on, and that the device's volume control is not at the absolute minimum setting
Launch the 'Settings' application in your distro
Go to the 'Sound' option
Find the dropdown for your 'Input Device', and change it to your preferred input device
For additional sound device controls, you may want to consider using Pulseaudio Volume Controls (package name pavucontrol)
Most Windows notebook computers power management settings will default to putting the computer to sleep with the lid closed, regardless of any external displays, keyboard, or mouse connected to the computer. If this is happening but you would prefer the system to remain active with the lid closed utilizing the external display or displays, these settings can be changed by performing the following:
For Windows 10:
Start by right-clicking on the Start button and select Power Options from the menu.
From the right side of the Power Options settings page, select the blue link for Additional power settings
From the choices present on the left-hand side of the Power Options window, please click on Choose what closing the lid does
Make sure the setting for When I close the lid under the Plugged In column is set to Do Nothing
Click the Save Changes button and restart the system (making sure that the laptop’s power adapter is also connected) and test the behavior again.
For Windows 11:
Start by right-clicking on the Start button and select Power Options from the menu.
In the upper left corner of the settings window, in the search box, type "lid" then select Change what closing the lid does from the search results
Make sure the setting for When I close the lid under the Plugged In column is set to Do Nothing
Click the Save Changes button to apply the new settings.
Closing the lid should no longer put the computer into sleep mode when an external display and power source is connected, instead one of the external displays should now become the Primary display with the desktop icons instead of the laptop's built-in display.
The lid may still need to be opened to perform the following tasks:
To power on the computer from a fully powered off state
To log into the computer if logged out or if the computer is restarted with the lid closed
To wake the computer from a deep sleep state ( hibernation, or Windows hybrid sleep states )
Unfortunately Plugable products do not support the Apple SuperDrive.
The Apple SuperDrive has stringent power requirements that can only be met by directly connecting the SuperDrive to your host laptop. As a result at this time Apple recommends only using their USB-C adapter cables. You can find more information on that here → How to connect the Apple USB SuperDrive
If you have purchased a Plugable product to use with your Apple SuperDrive, and would like some additional assistance please do not hesitate to reach out. You can do so by emailing support@plugable.com, or going to Plugable.com/Support.
Plugable products that have an ASIX AX88179A based Ethernet adapter may not perform as expected when using browser based speed tests, such as SpeedTest.net.
Problem: If you are running a browser based speed test such as SpeedTest.net using a Plugable ASIX AX88179A based Ethernet product such as our USBC-7IN1E Hub on macOS 11.6 Big Sur. Example pictured below.
Resolution: At this time the best solution would be to upgrade to macOS 12 if possible, as this problem is fully resolved in macOS 12 Monterey. Example pictured below. You can manually start the update process to macOS 12 Monterey by following this link. --> https://apps.apple.com/us/app/macos-monterey/id1576738294
Notes: The ASIX AX88179A is a driverless solution with macOS, and there are no drivers or firmware solutions for this problem at this time.
The below guide is an advanced troubleshooting step, and we do not recommend doing so unless you are comfortable manually altering files on your Apple product running macOS. You may not be able to perform the below troubleshooting step if you are unable to execute administrative credentials on your laptop. Please reach out to our support first if you do not wish to attempt the below instructions. You can do so at Plugable.com/Support
How to delete a specific Ethernet adapter from your Network devices on macOS
Click on the Apple logo in the top left corner of your primary monitor, and select ‘System Preferences’
Next select ‘Network’ in the ‘System Preferences' window.
In the now visible list, please select the Plugable Ethernet, or Thunderbolt Ethernet device that may not be working as expected.
Once selected click on the minus button in the bottom left of the network window.
Click on Apply in the bottom right.
Next click on the plus button in the bottom left of the network window, and add the previously removed device.
Click on Apply in the bottom right.
Test to see if this has resolved the unexpected behavior, and assure that your Ethernet is now working.
If this does not resolve the problem, please proceed to the next section (As noted previously the next section is for advanced users only!)
Manually erase your macOS Network Settings to fully reset the Network configuration
This will fully erase all of your Network configuration! Do not skip any steps, and proceed only if you are comfortable with each step!
Open the ‘Finder’ app, then in the ‘Go’ menu at the top of your screen select ‘Computer’
Click on ‘Macintosh HD’ then Library, Preferences, SystemConfiguration
Copy the file named ‘NetworkInterfaces.plist’ to your desktop as a backup of your current configuration.
Delete the original version of the ‘NetworkInterfaces.plist’ located in the SystemConfiguration directory.
Restart your Mac
Login to your Mac, and return to System Preferences → Network
If the list is now empty, please re-add the Plugable or Thunderbolt network adapter by clicking on the plus button in the bottom left of the Network window. Once done click on 'Apply'.
Test to see if this has resolved the unexpected network behavior
I am still unable to get my Ethernet connection working on my Mac
If this is the case please reach out to our support team. When you do please include a diagnostic log gathered using our PlugDebug tool (instructions are provided on the PlugDebug page). If you are not able to gather the PlugDebug diagnostics do not worry we are still here to help! Please reach out to our support team at support@plugable.com or Plugable.com/Support with a detailed description of your problem, and the model of Plugable product you are using.
We are often asked if it is okay to leave a notebook computer connected to one of our USB-C docking stations with Power Delivery for extended periods of time. The short answer is yes, it is no different from leaving the laptop connected to the manufacturer's original USB-C power supply for the same time. The long answer is yes for modern laptops, and maybe for older (1990s-early 2000s laptops) and involves going into the different battery technologies used in consumer electronics devices.
Another common question is if it is possible to use the docking station but to disable powering and charging the computer. When a modern notebook computer runs on battery power it will often set the system to a reduced power state which may impact performance, or connected devices and we recommend always powering the computer when using a desktop docking station. For all of our docking stations that provide power to the host computer this will not affect the lifespan of the computer's battery.
Modern Laptop Batteries: Lithium-Ion
Lithium-ion (li-ion) batteries are found in a wide range of consumer electronics from notebook computers and cell phones, to electric cars, power tools, and wearable electronics like wireless earbuds. Li-ion offers fast charging, high-current discharging, fairly long service live compared to other rechargeable battery technologies and are relatively inexpensive.
The life-span of a rechargeable battery depends on many factors including age, temperature history, charging patterns, the chemical composition of the specific battery, and usage. For example batteries stored at 100% charge will degrade faster than batteries stored at 50% charge, this is why most consumer electronics devices arrive from the manufacturer with between 25% to 75% charge.
Lithium-ion batteries are consumable components, however in most modern computers, cell phones, and tablets these are not user serviceable components. To help maintain the battery all modern computers and most consumer electronics will include battery charge and protection circuits. These can be fairly simple, charging up the battery at preset rates depending on the charge level to help maintain the battery life, or complex software controlled charging that monitors battery temperature, voltage and current draw to maintain the fastest charging while maintaining the battery longevity.
Modern notebook computers can be left connected to the original power cable or a docking station with charging capability for extended periods, and do not benefit from regular discharge/recharge cycles. Our docking stations with charging capability rely on USB Type-C Power Delivery to power and charge compatible computers. USB Type-C Power Delivery is a negotiated charging protocol between the host computer and the docking station or USB Type-C power supply, this allows the computer to draw only the power it requires, and even select the best voltage level for powering the computer. In combination with a computer's built-in battery charging controller the computer is capable of maintaining the battery's optimal state even when left connected to a power source for an extended period of time.
Legacy Laptop Batteries: NiCad and NiMH
Older laptops, from the 1990s and some early 2000s, as well as some consumer electronics, and most rechargeable AA or AAA battery replacements use Nickel-Cadmium (NiCad) or Nickel-Metal Hydride (NiMH) batteries. These batteries are slower to charge and discharge than li-ion batteries, and require very simple charge controllers, and in some cases can even be trickle-charged ( very low-current continuous charging ) if desired.
These batteries generally don't have smart charging controllers and to prolong the life of the battery required "training" or fully discharging and recharging the battery every so often. Many laptop manufacturers recommended fully charging and discharging a new laptop 2-3 times to train the battery, this is not necessary with modern laptops.
Conclusion
Modern notebook batteries are managed by the computer's built-in battery charging circuit, and require little to no user intervention to maintain optimal battery health. It does not harm the battery to leave the computer connected to an external power supply, so long as the computer is being used regularly. If the computer is to be stored for a prolonged period then discharging the battery to between 50-75% can help to maintain the battery life.
Batteries are consumable components and degrade over time, however modern notebook computers can extend the battery life generally to meet or exceed the life of the computer's other electronic components.
It's not uncommon for users to notice a certain level of heat generation from electronics and by extension, Plugable products during operation. In this knowledge base article, we'll explore the reasons behind this heat generation and why it is considered a normal experience within reasonable limits.
Electronics, by their nature, generate heat during operation. This is primarily a result of the electrical current flowing through various components, such as integrated circuits, transistors, and other electronic elements. As Plugable products are designed to efficiently process and transfer data (among other functionality), some level of heat generation is inherent.
Factors Influencing Heat Generation:
Power Consumption: The power consumption of a device directly influences the amount of heat it generates. Higher power usage, especially during data transfer or charging processes, can lead to increased heat.
Enclosure Design: The design of the product's enclosure and its ability to dissipate heat play a crucial role. Adequate ventilation and heat sinks are often incorporated to manage and disperse generated heat effectively. This is evident in our TBT3-UDZ and TBT4-UDZ designs. The metal case in these docks are designed to function as a heatsink with thermal pads placed throughout the enclosure. This allows heat dissipation from inside to the outside, but will also make it feel as if the device is “too hot”.
Ambient Temperature: The external environment may also play a role. Higher ambient temperatures can contribute to increased perceived heat from the product. This means that summer temperatures may increase the heat generation of not just Plugable products, but many other electronic devices.
Normal Heat Levels: While it is normal for electronic devices to generate heat, Plugable products are engineered to operate within safe temperature ranges. We conduct rigorous testing to ensure that the heat generated during normal operation falls within industry-standard safety parameters. While not all products are or need to be UL certified, we try to go by UL guidelines for thermal readings. The UL threshold is 77C/170.6F, and we aim for around 71C/160F.
Tips for Users:
Ventilation: Ensure that Plugable products have sufficient ventilation around them. Avoid placing them in enclosed spaces where heat dissipation may be impeded.
Usage Patterns: Intensive tasks such as high-speed data transfer or charging multiple devices simultaneously may result in increased heat generation. This is generally normal but may be more noticeable in such scenarios.
Accessories: A number of our devices will allow for the connection of USB accessories and as such, these will require power. If too many “power-hungry” devices are connected, this will cause the device to run much hotter than expected. Be sure to keep in mind the power limits of your dock/device.
In conclusion, experiencing heat from Plugable products is a normal aspect of their operation. Users can rest assured that we prioritize the safety and efficiency of our devices. By understanding the factors influencing heat generation and following simple usage guidelines, users can make the most of their Plugable products while ensuring a reliable and efficient user experience.
The Windows Firewall may block some networking features when the local network is not set to Private. This article will describe the process for setting the local network, either wired Ethernet or Wi-Fi to be a Private network.
Windows 11
1 - Connect the computer to the network, either wired or wireless
2 - Open the Windows Settings - right-click on the Start Menu and select “Settings” from the pop-up menu
3 - On the left column select “Network & internet”
For Wired Networks
4 - Select the “Ethernet” option
5 - The connected network should be expanded, if not click on “Network Connected" to expand the section
6 - Select the “Network profile type” either “Public network” or “Private network” to suite your needs
For Wi-Fi Networks
4 - Select the “Wi-Fi” option
5 - Select your Wi-Fi network name “properties”
6 - Select the “Network profile type” either “Public network” or “Private network” to suite your needs
Windows 10
1 - Connect the computer to the network, either wired or wireless
2 - Open the Windows Settings - right-click on the Start Menu and select “Settings” from the pop-up menu
3 - Select “Network & Internet” fro the bottom section
4 - Select the “Ethernet” option from the left pane
5 - Select the “Connected” network from the right pane
6 - Select the “Network profile type” either “Public network” or “Private network” to suite your needs
Windows PowerShell
If the option does not show up in the Windows Settings GUI, or if you prefer to use the terminal.
1 - Open a new terminal: Right-click on the Start Menu and select “Terminal”
2 - Run the following command to list the available networks
Many modern displays can support above the default 60Hz refresh rate, however this may need to be manually set within Windows 11. Please note, not all computers, graphics adapters, and docking stations can support all resolutions and refresh rates.
Setting the Display Refresh Rate in Windows 11
1. Right-click on the desktop and select Display Settings from the drop-down menu
2. Scroll down to the Related settings subsection and select Advanced display
3. At the top of the Advanced display window, select the external display from the drop-down menu
4. From the Choose a refresh rate drop-down menu select the desired refresh rate
Refresh Rate Limitations
With Windows 24H2 and newer, dynamic refresh rates are supported, this allows the system to adjust the display refresh rate to save power, up to the selected refresh rate. As a consequence of this new mode, when selecting the display refresh rate you may see an asterisk. This indicates that selecting the specific refresh rate may reduce the display resolution or image quality in order to prioritize the refresh rate. This exposes the refresh rate option from the display even if the display cable or computer is incapable of supporting that refresh rate at the native resolution and is the intended behavior per Microsoft. [1]
In the screenshot below the left side shows the 4K 120Hz capable display limited to 60Hz refresh rate without asterisks, and on the right the same display after setting the refresh rate to “120 Hz*”, the “Desktop mode” resolution has been reduced to 2560 x 1440 (1440p) instead of 3840 x 2160 (4K UHD). Unlike when using the display scaling option this also causes a reduction in image quality. On the right side asterisks are no longer shown in the refresh rate list. Setting the refresh rate back to 60Hz does not change the resolution, you will have to go back one page and set the resolution manually.
References
[1] Windows Insider description of new behavior (https://blogs.windows.com/windows-insider/2023/08/31/announcing-windows-11-insider-preview-build-25941-canary-channel/)
USB-C Power Delivery (PD) is negotiated between the power-sourcing equipment (e.g., a dock or multiport hub) and the connected host device. During this negotiation, the device offering power communicates its capabilities, and the host determines whether it can accept the power. If the host does not support Power Delivery, no power will be sent to the computer over the USB-C connection. This will allow you to take advantage of other capabilities such as data transfer or video output without risking damage to the computer.
One helpful way to identify your ethernet link rate speed is through the System Settings app in macOS. This can help us identify if your Plugable ethernet adapter is negotiating either 1Gbps or 2.5Gbps network speeds. Some routers have a mix of 1Gbps or 2.5Gbps ports, and in the macOS System Settings this will be shown in the Speed field.
In this example, we will be analyzing our USBC-E2500, which is a 2.5Gbps ethernet adapter. This method applies to all of our ethernet adapters, such as:
Navigate to the Network section, select the entry named “USB 10/100/1G/2.5G LAN” with the Green - Connected icon. Expand the Details button, and go to Hardware.
In the field that says Speed, you should see 2500Base-T if the ethernet adapter is connected to a 2.5G ethernet LAN port on your router. If you see 1000Base-T, this means the adapter is connected to a 1G ethernet LAN port. If you are expecting faster network speeds, please see your router's documentation on its multi-gig LAN port.