Hassle free, 2-Year Warranty
Fast, Free Shipping on Orders $35+
Lifetime Technical Support
30-Day Money Back Guarantee
Plugable 140W USB-C GaN Power Adapter
$49.95 USD
SKU: PS-EPR-140C1Amazon Rating : (79 Reviews)
Features
- GaN Technology—Quick charge your MacBook, laptop, tablet, phone, or other USB-C devices with this 140W charger. GaN charger with flip out plug is smaller than you’re accustomed to, and it doesn’t get as hot, but it’ll still charge up to 140W
- Intelligent Charging—140W EPR future-proofs your charging efforts. The USB C wall charger block detects and safely negotiates with any USB-C device to deliver the optimal charge. So, a 16” MacBook Pro can get the full 140W, but a phone might only need 15W
- 140W Fast Charging—Charge a 16” MacBook Pro from 0% to 100% in 1 hr 27 min. Because the 140 watt USB C charger supplies up to 140W USB (PD 3.1) depending on the host, your device charges fast. Cable compatible with MagSafe charging or an EPR cable needed for 140W charging
- Compatibility—Compatible with MagSafe Charger or with any USB-C device. Even compatible with popular devices like Laptops, iPhone 14 Pro Max, iPad Pro, Surface, Galaxy, XPS, Intelligent power handling ensures safe charging, even for lower-wattage devices
- 2-Year Coverage, Lifetime Support—Every Plugable product, including this GaN Wall Charger for Laptop, is covered against defects for 2 years and comes with lifetime support. If you ever have questions, contact our North American-based team - even before purchase
Free 3-Day Shipping When Buying Direct!
All Buying Options
The USB C charger block that came with your laptop is fine, but it isn’t your only option. Maybe you’ve lost it, you want a spare, or you just want a future-proof charger that’s a little smaller and doesn’t get as hot. The Plugable Type C charger fast charging has you covered.
Delivering up to 140W Power Delivery (PD) the USBC Charger negotiates with your device to deliver the optimal charging level. What does “up to” really mean? In this case, it means the charger is sort of future-proof. If the device you’re charging now only supports 65W, then that’s what the charger delivers. But if your next device needs more power, it can have as much as it needs—up to 140W for fast charging. Set the fast charger block up as a charging station that adapts to your USB-C laptop, tablet, or phone.
The Type C charging block is built on GaN technology, and that has a few benefits. For starters, this USB C power adapter is 14% smaller than the Apple equivalent—despite having identical Power Delivery specifications. And it’s more efficient, so it stays cooler to the touch.
The Type C charger also has a bevy of safety features like over-voltage protection, over-current protection, even short-circuit protection.
140W Extended Power Range
Intelligent power handling ensures safe, efficient charging at your device's optimal level up to 140W.
Quick Charge
Short on time? Charge a 16” MacBook Pro from 0% to 50% in as quick as 26 minutes or 0% to 100% in 90 minutes using a MagSafe cable.
GaN Power
GaN technology enables charging efficiency, for a 14% smaller adapter that stays cooler to the touch, compared to the Apple equivalent
Certified
With UL, FCC, and DOE certifications, users can trust and rely on the performance of a high-quality, safe power adapter.
Future-Proof Compatibility
Featuring the highest standards of USB Power Delivery 3.1 and support for EPR, this future-proof power adapter is compatible with laptops, tablets, and phones up to 140W.
While only a few laptops on the market support EPR charging, such as the newer generation 16” MacBook Pro, this power adapter has been designed to work with devices that have yet to be released.
To achieve the maximum 140W charging rates on current 140W Macs, the power adapter needs to be paired with a MagSafe cable (not included). This is because most USB-C connectors are limited to 100W charging. Windows systems that charge at 140W via USB-C are expected in 2023 and beyond. Using safe power negotiations, the power adapter will optimize the charging speeds no matter the device.
In The Box
Item and Quantity | Item Notes |
---|---|
1x Plugable USB-C Power Delivery 3.1 140W EPR GaN Charger |
Power
Port | Placement | Power Host / Device | Connection Type | Notes | Voltage | Amperage | Wattage |
---|---|---|---|---|---|---|---|
Mains Connection | Rear | Device | Region-specific Power Adapter | ||||
USB-C to Host | Front | Host | USB-C Power Delivery 3.1 | 28.0V | 5.0A | 140.0W |
Physical Stats
Item | Size (H x W x D) or Length | Weight | SKU or Part Number |
---|---|---|---|
USB-C Power Delivery 3.1 140W EPR GaN Charger | 7.5 x 7.6 x 3.15 centimeters 3 x 3 x 1.2 inches |
340 grams 12 ounces |
PS-EPR-140C1 |
Compatibility
The Plugable PS-EPR-140C1 USB-C charger is compatible with USB-C devices that charge using the Power Delivery standard. Like USB-C Laptops, Tablets, Phones, Battery Banks, etc.
The charger supports the following USB-C Power Delivery outputs:
- 5V up to 3A (15W)
- 9V up to 3A (27W)
- 15V up to 3A (45W)
- 20V up to 5A (100W)
- 28V up to 5A (140W)*
*28V operation is only for devices capable of USB-C Power Delivery Revision 3.1 with Extended Power Range (EPR).
Note: For Apple Silicon based Macs with 140W charging it will be required to use the Apple USB-C to MagSafe cable to achieve the full 140W. (These systems cannot support past 100W when using USB-C to USB-C as their USB-C ports do not support EPR.)
For a more in-depth look into EPR feel free to check out our blog post on this topic here: https://plugable.com/blogs/news/what-is-240w-usb-extended-power-range-epr
Get Started
- Plug the charger into an AC wall outlet or surge protector. When the charger is receiving power a green light on the front will turn on.
- Plug a USB-C cable into the charger and into the desired device to charge it.
Note: For Apple Silicon based Macs with 140W charging it will be required to use the Apple USB-C to MagSafe cable to achieve the full 140W. (These systems cannot support past 100W when using USB-C to USB-C.)
Questions? We're here to help! Please reach out to us at support@plugable.com
Filter Help Articles and Frequent Questions by Category
Choose one or more filters within each category to narrow down the articles. Each selection will result in only displaying articles that include all of your choices.
Articles
Well how about that, it looks like we don't have any articles matching your filters! Try removing one of your choices or clear the filters to show all articles.
You can always contact support if you need help too!
What is USB-C Power Delivery R3.1 Extended Power Range (EPR)?
The new USB Power Delivery specifications allow for the delivery of up to 240W via a USB Type-C cable (an increase from the previous 100W max). The previous Power Delivery range has been relabeled as Standard Power Range (SPR), and the new specifications (between 100W and 240W), have been labeled as Extended Power Range (EPR).
For a more in-depth look feel free to check out our blog post on this topic here: https://plugable.com/blogs/news/what-is-240w-usb-extended-power-range-epr
Can I leave my notebook computer connected to a charging dock overnight, or should I discharge and recharge the notebook battery regularly?
We are often asked if it is okay to leave a notebook computer connected to one of our USB-C docking stations with Power Delivery for extended periods of time. The short answer is yes, it is no different from leaving the laptop connected to the manufacturer's original USB-C power supply for the same time. The long answer is yes for modern laptops, and maybe for older (1990s-early 2000s laptops) and involves going into the different battery technologies used in consumer electronics devices.
Another common question is if it is possible to use the docking station but to disable powering and charging the computer. When a modern notebook computer runs on battery power it will often set the system to a reduced power state which may impact performance, or connected devices and we recommend always powering the computer when using a desktop docking station. For all of our docking stations that provide power to the host computer this will not affect the lifespan of the computer's battery.
Modern Laptop Batteries: Lithium-Ion
Lithium-ion (li-ion) batteries are found in a wide range of consumer electronics from notebook computers and cell phones, to electric cars, power tools, and wearable electronics like wireless earbuds. Li-ion offers fast charging, high-current discharging, fairly long service live compared to other rechargeable battery technologies and are relatively inexpensive.
The life-span of a rechargeable battery depends on many factors including age, temperature history, charging patterns, the chemical composition of the specific battery, and usage. For example batteries stored at 100% charge will degrade faster than batteries stored at 50% charge, this is why most consumer electronics devices arrive from the manufacturer with between 25% to 75% charge.
Lithium-ion batteries are consumable components, however in most modern computers, cell phones, and tablets these are not user serviceable components. To help maintain the battery all modern computers and most consumer electronics will include battery charge and protection circuits. These can be fairly simple, charging up the battery at preset rates depending on the charge level to help maintain the battery life, or complex software controlled charging that monitors battery temperature, voltage and current draw to maintain the fastest charging while maintaining the battery longevity.
Modern notebook computers can be left connected to the original power cable or a docking station with charging capability for extended periods, and do not benefit from regular discharge/recharge cycles. Our docking stations with charging capability rely on USB Type-C Power Delivery to power and charge compatible computers. USB Type-C Power Delivery is a negotiated charging protocol between the host computer and the docking station or USB Type-C power supply, this allows the computer to draw only the power it requires, and even select the best voltage level for powering the computer. In combination with a computer's built-in battery charging controller the computer is capable of maintaining the battery's optimal state even when left connected to a power source for an extended period of time.
Legacy Laptop Batteries: NiCad and NiMH
Older laptops, from the 1990s and some early 2000s, as well as some consumer electronics, and most rechargeable AA or AAA battery replacements use Nickel-Cadmium (NiCad) or Nickel-Metal Hydride (NiMH) batteries. These batteries are slower to charge and discharge than li-ion batteries, and require very simple charge controllers, and in some cases can even be trickle-charged ( very low-current continuous charging ) if desired.
These batteries generally don't have smart charging controllers and to prolong the life of the battery required "training" or fully discharging and recharging the battery every so often. Many laptop manufacturers recommended fully charging and discharging a new laptop 2-3 times to train the battery, this is not necessary with modern laptops.
Conclusion
Modern notebook batteries are managed by the computer's built-in battery charging circuit, and require little to no user intervention to maintain optimal battery health. It does not harm the battery to leave the computer connected to an external power supply, so long as the computer is being used regularly. If the computer is to be stored for a prolonged period then discharging the battery to between 50-75% can help to maintain the battery life.
Batteries are consumable components and degrade over time, however modern notebook computers can extend the battery life generally to meet or exceed the life of the computer's other electronic components.
USB Power Delivery and Charging Battery-Powered Devices
The humble Universal Serial Bus, more commonly known as USB, has evolved to be much more than just a way to connect a mouse or keyboard to your computer. With the proliferation of power-hungry portable devices that charge over USB, we’ve all come to expect USB to operate as a Universal Source of Battery charging but, unfortunately, it’s just not that easy.
Modern Charging Standards
USB-C and USB Power Delivery (PD) Standard Power Range (up to 100W)
The USB-C connector and USB-PD specification up to revision 3.0 enable charging at up to 100W (typically 96W to 98W real-world maximums per IEC regulations). However, the protocol for negotiation between host and charger can be complex and hard to understand. Early USB-C PD implementations (starting in 2015) could be unreliable, and many manufacturers of devices used proprietary implementations to block universal charging solutions (docking stations, third party chargers, etc). With time and several updates to the PD spec there have been vast improvements in the consumer experience, though we do still encounter scenarios where there may be compatibility issues that are beyond our control (3rd party devices).
Generally speaking, USB-C PD is an intelligent charging standard with the ability to deliver variable voltage and amperage charging rates (equating to the final charge wattage). USB-C PD defaults to 5V and can adjust dynamically depending on the implementation of charger and device up to 9V, 12V, 15V, and 20V up to 5A. Not all USB-C ports on devices (like a hub or dock) offer PD charging, some USB-C ports may only offer standard USB 3.0 power at 900mA. Others may offer more at commonly found values of 1.5A or 3A at 5V (7.5W and 15W). Likewise, not all USB-C devices (like a laptop or tablet) will have the ability to charge over this connection, some still require a dedicated DC barrel jack charger that shipped with the device.
Without going into overly complex detail, USB-C PD can either use a set signal on two communication lines through a USB-C connector and cable (CC1 and CC2) which is determined by either a set resistance value and subsequent voltage reading, or two-way data communication can be established where the charger can tell the attached device how much power it can supply and/or the device can request how much power it needs. Once a contract has been negotiated and established, charging may then commence.
As an example, a laptop may require 65W of power to charge, this would most likely need 20V at 3.25A. When connecting this laptop to a USB-C charger (or dock, etc) a series of events as outlined above will occur. If connecting to a lower wattage charger, say 60W for this example, the laptop and charger will try to establish the fastest possible common charging rate which would be 20V 3A. In most cases this will work perfectly fine and the laptop will charge slightly slower than it would with the original 65W charger it shipped with.
But what would happen if connecting to a higher wattage charger, like 96W or 98W? Many would expect their laptop would be damaged, however, because USB-C PD is intelligent some two-way communication will occur, and the charger should negotiate the fastest possible rate that is requested to deliver 65W. It is also important to note that chargers do not "push" power to a device, rather, devices "pull" power as needed. As long as the charger does not output a voltage higher than what the device is expecting damage won't be possible. Because USB-C defaults to 5V, a higher voltage will not be output unless that higher voltage has been requested and properly negotiated.
What about a laptop that needs more power, like 135W or higher (which is above the USB-C spec)? If the laptop supports USB-C PD through its USB-C connector despite needing more power than can technically be provided, it will try to charge as fast as the charger can offer. Due to the higher power requirements charging may be slower but still gain battery percentage, or the system will be "treading water", only able maintain a stable battery charge without gaining. In some situations like this, the system when under extreme CPU or GPU load may supplement more power by draining the battery while also drawing power from the charger. This may lead to a slow drain and would eventually run out of power until the load is reduced. In some rare situations like this, the laptop may only be able to gain battery while in sleep mode or off.
USB Power Delivery (PD) Extended Power Range (up to 240W)
The new USB Power Delivery revision 3.1 specifications allow for the delivery of up to 240W via a USB Type-C cable (an increase from the previous 100W max). The previous Power Delivery range has been relabeled as Standard Power Range (SPR), and the new specifications (between 100W and 240W), have been labeled as Extended Power Range (EPR).
For a more in-depth look feel free to check out our blog post on this topic here: https://plugable.com/blogs/news/what-is-240w-usb-extended-power-range-epr
Thunderbolt 3 / Thunderbolt 4 / USB4
Thunderbolt 3, Thunderbolt 4, and USB4 all share the USB-C connector specification and utilize the aforementioned power and charging abilities introduced by USB-C.
Qualcomm Quick Charge (QC) 4/4+/5
Qualcomm QC 4, 4+, and 5 are cross-compatible with both USB PD and USB-C specifications, falling back to PD in the event of a compatibility issue. Currently, Plugable does not offer any QC devices.
Legacy Device Charging
USB Device Charging
The original USB 2.0 specification limited the power that could be drawn from any...
The original USB 2.0 specification limited the power that could be drawn from any USB port to 500mA. This is plenty to charge smaller batteries reasonably quickly, but for larger batteries, a higher wattage solution is needed. Though this limit was increased to 900mA with the advent of SuperSpeed USB 3.0, most battery-powered devices were left wanting, either charging at a very slow rate or "treading water". Over time, these limitations drove device makers to come up with novel ways to draw more than the allowed current from standard USB ports, typically accomplished by signaling to the devices along the data lines that it’s okay to draw current at a higher rate.
Regrettably, there wasn’t a widely-adopted standard, so not all ports and devices spoke the same language. To make the situation even more frustrating for end-users, there wasn’t much public discussion or documentation about these signals.
A quick note about power and charging: It is up to the device attached to the charger to decide if, and how quickly to charge. Either based upon the charging signal it receives from the charger that it may use as a guideline, or if the device does not utilize charging signals, it will charge by drawing as much power as it possibly can unregulated. Some "dumb" devices will overload a standard USB port and may cause the port to temporarily cease functioning (until the port is reset) or may cause permanent damage. It is also important to note that chargers do not "push" power to a device, rather, devices "pull" power as needed. If you have a USB device that calls for 500mA of current, connecting it to say a 2.4A (2400mA) USB charging port will not damage it, the device will only draw as much power as needed.
USB Battery Charging Standard
Some devices support the USB Battery Charging (BC 1.1/1.2) standard, but that support is usually undocumented. Charging behavior is often learned through trial-and-error. With the addition of BC 1.2, the USB standard included three port types.
- Standard Downstream Port (SDP) - Data-only port with no special charging capabilities. Provides data connectivity and the standard 500mA to downstream devices.
- Charging Downstream Port (CDP) - Simultaneous USB data connectivity and high-current charging. Provides up to 1.5A to downstream devices. Has a charging detection phase that triggers device charging, then switches over to data mode after charging has been established.
- Dedicated Charging Port (DCP) - Charging-only port with no data connection. Provides up to 1.5A to downstream devices. This signal simply shorts the data D+ and D- lines.
Proprietary Signals
Many manufacturers created their own DCP signals to either provide higher charging rates or only charge from “authorized” chargers. iPads, for example, can draw up to 2.4A when connected to an Apple computer or Apple charger, but they will not charge at all when connected to a regular USB port.
Apple
Apple was among the first manufacturers to create their own charging signals to meet the needs of their power-hungry mobile devices.
- Apple 2.4A: 2.7V D+, 2.7V D-
- Apple 2.1A: 2V D+, 2.7V D-
- Apple 1A: 2.7V D+, 2V D-
- Apple 500mA: 2V D+, 2V D-
Signal | D+ Volts | D- Volts |
Apple 2.4A | 2.7V | 2.7V |
Apple 2.1A |
2V | 2.7V |
Apple 1A |
2.7V |
2V |
Apple 500mA |
2V |
2V |
Samsung
Many legacy Samsung devices use the standard BC 1.2 charging standard for DCP, CDP, and SDP modes. Even older devices often used a proprietary Samsung DCP signal (1.2V D+, 1.2V D-)
Qualcomm Quick Charge (QC) 1/2/3
Legacy Qualcomm QC chargers are capable of outputting much higher power than standard USB chargers. These signals are specifically designed to work with mobile devices containing Qualcomm Snapdragon SoC chips. This standard is often re-branded by manufacturers for marketing purposes, but the standard behind these technologies is Qualcomm QC. A few well-known rebrands of Qualcomm QC are listed below. Currently, Plugable does not offer any QC devices.
- Samsung Adaptive Fast Charger
- Oppo Super VOOC
- OnePlus WarpCharge (Note: There are several implementations of WarpCharge that have evolved with new devices, some being fully OnePlus proprietary offering up to 65W.)
- Huawei SuperCharge
QC chargers output various voltages based on the signals sent over the data lines from the powered device.
Output Volts (Vcc) | D+ Volts | D- Volts |
5V |
0.6V |
GND |
9V |
3.3V |
0.6V |
12V |
0.6V |
0.6V |
20V |
3.3V |
3.3V |
"Smart" Charging
Smart chargers contain a charging controller chip that attempts to detect the ideal signal for the attached downstream device. Once the ideal signal is detected, the charger will stop cycling through signals and the powered device will start charging.
Understanding how adaptive/optimized charging methods have an impact on your smartphone's battery life, performance, and longevity.
With most modern smartphones you may have likely noticed a notification message while charging your phone indicating that your phone has entered "Optimized Battery Charging", this is how Apple refers to its smart charging messaging. With Android devices they will also show this notification message while charging although they refer to it "Adaptive Charging". Through these intelligent charging methods your phone will artificially reduce its charging speeds so that in the long run it will lengthen its overall battery life.
When setting up a new smart phone it may take a few weeks of machine learning to recognize your usage behavior and charging habits. Batteries go through wear and tear to which the more charge cycles it goes through the less healthier the overall battery becomes leading to it holding a lesser charge and other issues.
Your phone will alert you with a notification when it enters into a battery preserving charging state. At night you may notice your phone charging significantly slower along with a message saying “Battery full by 7:00 AM”. Even though it has the ability to fully charge in a much shorter time. If you set an alarm for an even earlier time your phone can adjust to finish charging at your alarm time. This is your phone prolonging the time it takes to charge to 100% in order to preserve battery health.
The reason why your phone will artificially slow its charging rate is to spend less time at 100% battery, and the less time your phone spends at 100% the more it helps with your overall battery health.
It is possible to disable Optimized/Adaptive Charging in your device's battery and charging settings although it is ideal for the majority of users to leave this setting enabled.
Plugable Chargers Features and Common Use Cases
Plugable offers a range of high-quality chargers designed to meet diverse charging needs. This article provides an overview of common use cases for our chargers and highlights key features such as Programmable Power Supply (PPS) support and third-party safety testing to UL standards.
Key Features of Plugable Chargers
- Programmable Power Supply (PPS): Some Plugable chargers are equipped with PPS technology, which allows them to dynamically adjust their output for optimal charging speeds and efficiency, ensuring your devices charge quickly and safely.
- Safety: Safety is paramount at Plugable. In addition to rigorous internal testing, our chargers undergo third-party safety testing to meet UL standards. This certification (where applicable) ensures that our products are safe, reliable, and perform as expected.
- Compact and Portable Designs: Plugable chargers are designed with portability in mind, making them perfect for travel or as secondary chargers. Their sleek and compact form factors ensure they fit easily into bags and tight spaces without compromising on power.
- Versatility: Whether you need to charge a laptop, phone, tablet, or multiple devices simultaneously, Plugable offers a charger to meet your needs. Our chargers are compatible with a wide range of devices from various manufacturers, including Apple, Samsung, and Google.
Common Use Cases for Plugable Chargers
USBC-PS-60W: USB-C 60W Power Supply
Use Case #1: Ideal replacement power adapter for most consumer and business laptops including popular systems such as Apple MacBooks, Windows laptops (Dell XPS, HP Spectre, Lenovo ThinkPad), and Chromebooks.
Use Case #2: A worthwhile secondary charger to keep in your laptop bag/backpack.
Use Case #3: Optimal replacement USB-C power source for pairing with portable gaming consoles such as the Nintendo Switch or Steam Deck – either docked or handheld.
Features:
- 60W Power Delivery (PD) for efficient charging.
- Variable 5, 9, 12, 15, and 20V output at up to 3A (60W)
- Compact and portable design.
- Third-party lab tested and certified to meet or exceed UL/IEC 62368-1 standards.
PS-EPR-140C1: USB-C 140W GaN Power Adapter with PD 3.1 EPR
Use Case #1: Perfect for those seeking a smaller, lighter replacement or secondary charger for Apple devices requiring up to 140W. Also works as a great daily driver for consumer, business, and workstation laptops with USB-C or Thunderbolt charging.
Use Case #2: Good for quickly charging laptops, power banks, or other portable devices such as camping gear or educational tools at their maximum charging rate.
Use Case #3: Future-proof charger for upcoming laptops that can charge at rates above 100W through USB-C PD 3.1 Extended Power Range (EPR)
Features:
- 140W Power Delivery (PD) for fast charging.
- EPR and supported voltage ranges: 5V up to 3A (15W), 9V up to 3A (27W), 15V up to 3A (45W), 20V up to 5A (100W), 28V up to 5A (140W)
- Gallium Nitride (GaN) based technology for a power efficient and compact design
- Smaller and lighter (also doesn’t get as hot) design compared to the original Apple charger.
- Charge a 16” MacBook Pro from 0% to 100% in 1 hour 27 minutes.
- Third-party lab tested and certified to meet or exceed UL/IEC 62368-1 standards
PS-30C1W/PS-30C1B: USB-C 30W GaN Power Adapter
Use Case: Excellent travel or replacement charger for phones and tablets including Apple iPhones and iPads, Samsung Galaxy, Google Pixel, Lenovo Tab, and OnePlus devices
Features:
- 30W Power Delivery (PD) for fast charging.
- Available in white (PS-30C1W) and black (PS-30C1B) colors.
- Supported voltages: 5V up to 3A (15W), 9V up to 3A (27W), 12V up to 2.5A (30W), 15V up to 2A (30W), 20V up to 1.5A (30W), PPS 3.3V-11V up to 2.7A
- Gallium Nitride (GaN) based technology for a power efficient and compact design
- PPS support for a wide range of device compatibility.
- Compact design for easy portability.
- Third-party lab tested and certified to meet or exceed UL/IEC 62368-1 standards.
PS-40C2W/PS-40C2B: Dual USB-C 40W Power Adapter
Use Case #1: Ideal for tight spaces such as behind nightstands or tables, and capable of charging various devices including a wide range of USB-C based mobile devices and even laptops such as MacBooks and Ultrabooks (may take some time depending on make and model).
Use Case #2: Compatible with mobile gaming devices like the Nintendo Switch and Steam Deck, offering a versatile charging solution for gamers. Similar gaming devices (ROG Ally, etc.) should also be compatible with the PS-40C2W/B.
Use Case #3: Use as a compact dual power source for lower-power USB-C devices such as Apple Homepod Mini speakers, Raspberry Pis, portable monitors, USB fans, and wireless charging stations.
Features:
- Dual port design with 40W total output (first device that is plugged in will take priority charging to ensure fast charging).
- Low profile for tight space applications.
- Supports up to 20V
- Available in white (PS-40C2W) and black (PS-40C2B).
- PPS support for efficient charging of multiple devices.
- Third-party lab tested and certified to meet or exceed UL/IEC 62368-1 standards.
PS1-CA1: Wall Power Outlet Extender with USB-A and USB-C Charging Ports
Use Case #1: Perfect for those who need to charge both USB-A and USB-C devices without sacrificing a wall plug.
Use Case #2: A worthwhile addition to a garage or workspace. Powering tools like a drill or saw while charging a Bluetooth speaker or running an air compressor or work light while charging a portable battery pack.
Use Case #3: Functionality for a guest room! Power a bedside lamp or alarm clock while providing guests with a convenient USB charging option for their everyday devices, including wearables such as smartwatches or fitness tracker or audio products such as AirPods or Bluetooth headphones.
Use Case #4: Makes for a great traveling charger with 3 different charging options built-in and the grounding pin helps to secure the charger to wall outlets in hotels
Features:
- Dual port design with USB-A and USB-C compatibility.
- Maintains access to a wall plug while charging devices.
- Compact and convenient for everyday use.
- Supported configurations and voltages:
- USB-C only 30W max:
- 5V/3A
- 9V/2.22A~3A
- 12V/1.67A~2.5A
- 15V/2A
- USB-A Only:
- 5V/2.4A
- Note: When USB-C and USB-A are used at the same time, USB-C supports 20W max & USB-A supports 12W max.
- USB-C only 30W max:
- Supports PD and rapidly charges your devices at up to 30W when charging a single USB-C device
- Third-party lab tested and certified to meet or exceed UL/IEC 62368-1 standards.
Plugable Technologies is committed to providing high-quality, reliable chargers that cater to a variety of use cases. With features like PPS support, UL certification, and compact designs, our chargers are designed to meet your everyday charging needs efficiently and safely. For more information or to purchase a Plugable charger, visit our website or contact our support team.
If you have any questions or need further assistance, please feel free to reach out to our support team at support@plugable.com.