











Plugable USB Type-C Power Delivery 60W Power Supply
$39.95 USD
SKU: USBC-PS-60WAmazon Rating : (40 Reviews)
Features
- Spare Charger—Designed to serve as a spare or replacement USB-C charger for compatible laptops, tablets, and phones
- Portable Design—USB C wall charger is a compact size for use on the go with a detachable 4ft US wall outlet cable. On the other end of the charger block, a permanently attached USB-C cable from charger to host is 6ft long for convenience
- Fast Charging—Meets USB-IF Power Delivery (PD) 2.0 specifications. Supports a wide range of voltages and auto-negotiates with the attached USB-C device for best charging rate. UL and CE Certified. 5, 9, 12, 15, and 20V output at up to 3A (60W)
- Compatibility—USB C power adapter is compatible with most devices that charge over USB-C including: Apple MacBook and MacBook Pro, Dell XPS, Lenovo Yoga , USB-C Chromebooks, Samsung Galaxy, Google Pixel and Pixel XL plus many more
- 2 Year Warranty—We love our Plugable products, and hope you will too. All of our products are backed with a 2-year limited parts and labor warranty as well as Seattle-based email support

After decades of proprietary chargers, true universal charging compatibility has finally arrived. New laptops, phones, and tablets are rapidly adopting a new unified connection for charging: USB-C. This includes many new laptops, tablets, and phones from leading manufacturers such as Apple, Dell, Google, HP, Lenovo, Samsung, and many more.
The Plugable 60W USB-C charger can charge your compatible USB-C laptops, tablets and phones with up to 60W of power.
Please see the list of known compatible USB-C and Thunderbolt 3 host devices in the Compatibility section below.
Compatibility
Apple* - MacBook (12" Retina Late 2015-2017), MacBook Pro (13" & 15" Late 2016-2018), MacBook Air (2018)
Acer - Chromebook (14,15 CB515-1HT-P39B, Spin 11 R751TN-C5P3, Spin 11 R751T-C4XP), Nitro 5 Gaming AN515-41-F6VS, Spin7 SP714-51, Swift 7
Asus - Chromebook Flip C302CA, Pro B9440UA, Transformer Book T100HA, Zenbook (Zenbook, 3 UX390UA, 3 Deluxe UX490UA), ZenPad S 8.0
Dell - Inspiron (13 2-in-1 737, 15 2-in-1 7569), Latitude (5285, 5289, 5580, E7370, 7275, 7285, 7389, E7480), Venue (8 Pro Pad, 11 Pro Pad), XPS (12 2-in-1 9250, 13 2-in-1 9365, 13 9350, 13 9360)
Google - Chromebook Pixel 2 2015, Nexus (5X, 6P), Pixel (1, 1 XL, 2, 2 XL, C), Pixelbook
HP - Chromebook 13, Elite x2, EliteBook (Folio G1, x360 1020 G2, 1040 G4), Envy 13-AD107TU, Pavilion x2, Pro (Tablet 608, x2), Spectre (13, x360 13" w/ Thunderbolt 3, x360 15" w/ Thunderbolt 3), x2 210 G2
Huawei - MateBook (Standard, E, X, X Pro)
Lenovo - Miix (720, T470 w/ Intel 7th Gen CPU), T570, ThinkPad (13", E480, T480, X1 Carbon Gen 5, X1 Yoga Gen 2), X1 (Carbon 2017, Tablet, Yoga), X270 w/ Intel 7th Gen CPU, Yoga (720 13", 910 14", 920)
Microsoft - Surface Book 2
Nintendo - Switch
Razer - Blade (Late 2016 w/ Intel 6th Gen CPU, Stealth 2015 w/ Intel 6th Gen CPU)
Samsung - Chromebook Plus, Galaxy (S8, Galaxy S8+, S9, S9+, Tab Pro S, Tab S3), Notebook 9 (Pen 13.3", 9 Pro 13", 9 Pro 15")
*Apple systems will charge slowly if using the Apple USB-C Digital AV Multiport Adapter with our charger.

USB-C Power Delivery
The new ubiquitous standard in charging technology, USB-C Power Delivery (PD) 2.0 provides the best possible charging rate for your device with up to 60W of power available. The charger negotiates the maximum charge rate your device is capable of, supporting PD profiles at 5V, 9V, 12V, 15V, and 20V. Each profile is capable of delivering current at a maximum of 3A.

Compact Design
With its diminutive size, the USB-C Power Delivery brick easily stows in any laptop bag, carry-on, or backpack while on the go. The built-in USB-C cable measures in at 6ft, and the detachable AC cable extends 4ft, with a combined span of 10ft length.
Specifications
- Model: USBC-PS-60W
- Host Interface: USB-C
- Input: 110-240VAC/50-60Hz
- Output: 60W (max 20V/3A)
- 5V, 9V, 12V, 15V, 20V profiles at 3A
- Cable Lengths: 4ft (1.2m) AC (C7 plug), 6ft (1.8m) USB-C
In The Box
Item and Quantity | Item Notes |
---|---|
1x 4ft AC Power Cable |
Power
Port | Placement | Power Host / Device | Connection Type | Notes | Voltage | Amperage | Wattage |
---|---|---|---|---|---|---|---|
Power Supply | Rear | Device | Region-specific Power Adapter | ||||
USB-C to Host | Front | Host | USB-C Power Delivery 2.0 | 20.0V | 3.0A | 60.0W |
Included Cables
Port Type (Side 1) | Cable Specification | Port Type (Side 2) | Cable Length | External Power for Cable |
---|---|---|---|---|
1x Male USB-C | 1.8m/6.0ft | Yes |
Get Started
1. Ensure that the AC cable is attached to the adapter "brick."
2. Plug the AC cable into a wall outlet or surge protector.Plug the USB-C connector into the desired device to charge it.
Questions? We're here to help! Please reach out to us at support@plugable.com
Filter Help Articles and Frequent Questions by Category
Articles
Well how about that, it looks like we don't have any articles matching your filters! Try removing one of your choices or clear the filters to show all articles.
You can always contact support if you need help too!
Can I leave my notebook computer connected to a charging dock overnight, or should I discharge and recharge the notebook battery regularly?
We are often asked if it is okay to leave a notebook computer connected to one of our USB-C docking stations with Power Delivery for extended periods of time. The short answer is yes, it is no different from leaving the laptop connected to the manufacturer's original USB-C power supply for the same time. The long answer is yes for modern laptops, and maybe for older (1990s-early 2000s laptops) and involves going into the different battery technologies used in consumer electronics devices.
Another common question is if it is possible to use the docking station but to disable powering and charging the computer. When a modern notebook computer runs on battery power it will often set the system to a reduced power state which may impact performance, or connected devices and we recommend always powering the computer when using a desktop docking station. For all of our docking stations that provide power to the host computer this will not affect the lifespan of the computer's battery.
Modern Laptop Batteries: Lithium-Ion
Lithium-ion (li-ion) batteries are found in a wide range of consumer electronics from notebook computers and cell phones, to electric cars, power tools, and wearable electronics like wireless earbuds. Li-ion offers fast charging, high-current discharging, fairly long service live compared to other rechargeable battery technologies and are relatively inexpensive.
The life-span of a rechargeable battery depends on many factors including age, temperature history, charging patterns, the chemical composition of the specific battery, and usage. For example batteries stored at 100% charge will degrade faster than batteries stored at 50% charge, this is why most consumer electronics devices arrive from the manufacturer with between 25% to 75% charge.
Lithium-ion batteries are consumable components, however in most modern computers, cell phones, and tablets these are not user serviceable components. To help maintain the battery all modern computers and most consumer electronics will include battery charge and protection circuits. These can be fairly simple, charging up the battery at preset rates depending on the charge level to help maintain the battery life, or complex software controlled charging that monitors battery temperature, voltage and current draw to maintain the fastest charging while maintaining the battery longevity.
Modern notebook computers can be left connected to the original power cable or a docking station with charging capability for extended periods, and do not benefit from regular discharge/recharge cycles. Our docking stations with charging capability rely on USB Type-C Power Delivery to power and charge compatible computers. USB Type-C Power Delivery is a negotiated charging protocol between the host computer and the docking station or USB Type-C power supply, this allows the computer to draw only the power it requires, and even select the best voltage level for powering the computer. In combination with a computer's built-in battery charging controller the computer is capable of maintaining the battery's optimal state even when left connected to a power source for an extended period of time.
Legacy Laptop Batteries: NiCad and NiMH
Older laptops, from the 1990s and some early 2000s, as well as some consumer electronics, and most rechargeable AA or AAA battery replacements use Nickel-Cadmium (NiCad) or Nickel-Metal Hydride (NiMH) batteries. These batteries are slower to charge and discharge than li-ion batteries, and require very simple charge controllers, and in some cases can even be trickle-charged ( very low-current continuous charging ) if desired.
These batteries generally don't have smart charging controllers and to prolong the life of the battery required "training" or fully discharging and recharging the battery every so often. Many laptop manufacturers recommended fully charging and discharging a new laptop 2-3 times to train the battery, this is not necessary with modern laptops.
Conclusion
Modern notebook batteries are managed by the computer's built-in battery charging circuit, and require little to no user intervention to maintain optimal battery health. It does not harm the battery to leave the computer connected to an external power supply, so long as the computer is being used regularly. If the computer is to be stored for a prolonged period then discharging the battery to between 50-75% can help to maintain the battery life.
Batteries are consumable components and degrade over time, however modern notebook computers can extend the battery life generally to meet or exceed the life of the computer's other electronic components.
USB Power Delivery and Charging Battery-Powered Devices
The humble Universal Serial Bus, more commonly known as USB, has evolved to be much more than just a way to connect a mouse or keyboard to your computer. With the proliferation of power-hungry portable devices that charge over USB, we’ve all come to expect USB to operate as a Universal Source of Battery charging but, unfortunately, it’s just not that easy.
Modern Charging Standards
USB-C and USB Power Delivery (PD) Standard Power Range (up to 100W)
The USB-C connector and USB-PD specification up to revision 3.0 enable charging at up to 100W (typically 96W to 98W real-world maximums per IEC regulations). However, the protocol for negotiation between host and charger can be complex and hard to understand. Early USB-C PD implementations (starting in 2015) could be unreliable, and many manufacturers of devices used proprietary implementations to block universal charging solutions (docking stations, third party chargers, etc). With time and several updates to the PD spec there have been vast improvements in the consumer experience, though we do still encounter scenarios where there may be compatibility issues that are beyond our control (3rd party devices).
Generally speaking, USB-C PD is an intelligent charging standard with the ability to deliver variable voltage and amperage charging rates (equating to the final charge wattage). USB-C PD defaults to 5V and can adjust dynamically depending on the implementation of charger and device up to 9V, 12V, 15V, and 20V up to 5A. Not all USB-C ports on devices (like a hub or dock) offer PD charging, some USB-C ports may only offer standard USB 3.0 power at 900mA. Others may offer more at commonly found values of 1.5A or 3A at 5V (7.5W and 15W). Likewise, not all USB-C devices (like a laptop or tablet) will have the ability to charge over this connection, some still require a dedicated DC barrel jack charger that shipped with the device.
Without going into overly complex detail, USB-C PD can either use a set signal on two communication lines through a USB-C connector and cable (CC1 and CC2) which is determined by either a set resistance value and subsequent voltage reading, or two-way data communication can be established where the charger can tell the attached device how much power it can supply and/or the device can request how much power it needs. Once a contract has been negotiated and established, charging may then commence.
As an example, a laptop may require 65W of power to charge, this would most likely need 20V at 3.25A. When connecting this laptop to a USB-C charger (or dock, etc) a series of events as outlined above will occur. If connecting to a lower wattage charger, say 60W for this example, the laptop and charger will try to establish the fastest possible common charging rate which would be 20V 3A. In most cases this will work perfectly fine and the laptop will charge slightly slower than it would with the original 65W charger it shipped with.
But what would happen if connecting to a higher wattage charger, like 96W or 98W? Many would expect their laptop would be damaged, however, because USB-C PD is intelligent some two-way communication will occur, and the charger should negotiate the fastest possible rate that is requested to deliver 65W. It is also important to note that chargers do not "push" power to a device, rather, devices "pull" power as needed. As long as the charger does not output a voltage higher than what the device is expecting damage won't be possible. Because USB-C defaults to 5V, a higher voltage will not be output unless that higher voltage has been requested and properly negotiated.
What about a laptop that needs more power, like 135W or higher (which is above the USB-C spec)? If the laptop supports USB-C PD through its USB-C connector despite needing more power than can technically be provided, it will try to charge as fast as the charger can offer. Due to the higher power requirements charging may be slower but still gain battery percentage, or the system will be "treading water", only able maintain a stable battery charge without gaining. In some situations like this, the system when under extreme CPU or GPU load may supplement more power by draining the battery while also drawing power from the charger. This may lead to a slow drain and would eventually run out of power until the load is reduced. In some rare situations like this, the laptop may only be able to gain battery while in sleep mode or off.
USB Power Delivery (PD) Extended Power Range (up to 240W)
The new USB Power Delivery revision 3.1 specifications allow for the delivery of up to 240W via a USB Type-C cable (an increase from the previous 100W max). The previous Power Delivery range has been relabeled as Standard Power Range (SPR), and the new specifications (between 100W and 240W), have been labeled as Extended Power Range (EPR).
For a more in-depth look feel free to check out our blog post on this topic here: https://plugable.com/blogs/news/what-is-240w-usb-extended-power-range-epr
Thunderbolt 3 / Thunderbolt 4 / USB4
Thunderbolt 3, Thunderbolt 4, and USB4 all share the USB-C connector specification and utilize the aforementioned power and charging abilities introduced by USB-C.
Qualcomm Quick Charge (QC) 4/4+/5
Qualcomm QC 4, 4+, and 5 are cross-compatible with both USB PD and USB-C specifications, falling back to PD in the event of a compatibility issue. Currently, Plugable does not offer any QC devices.
Legacy Device Charging
USB Device Charging
The original USB 2.0 specification limited the power that could be drawn from any...
The original USB 2.0 specification limited the power that could be drawn from any USB port to 500mA. This is plenty to charge smaller batteries reasonably quickly, but for larger batteries, a higher wattage solution is needed. Though this limit was increased to 900mA with the advent of SuperSpeed USB 3.0, most battery-powered devices were left wanting, either charging at a very slow rate or "treading water". Over time, these limitations drove device makers to come up with novel ways to draw more than the allowed current from standard USB ports, typically accomplished by signaling to the devices along the data lines that it’s okay to draw current at a higher rate.
Regrettably, there wasn’t a widely-adopted standard, so not all ports and devices spoke the same language. To make the situation even more frustrating for end-users, there wasn’t much public discussion or documentation about these signals.
A quick note about power and charging: It is up to the device attached to the charger to decide if, and how quickly to charge. Either based upon the charging signal it receives from the charger that it may use as a guideline, or if the device does not utilize charging signals, it will charge by drawing as much power as it possibly can unregulated. Some "dumb" devices will overload a standard USB port and may cause the port to temporarily cease functioning (until the port is reset) or may cause permanent damage. It is also important to note that chargers do not "push" power to a device, rather, devices "pull" power as needed. If you have a USB device that calls for 500mA of current, connecting it to say a 2.4A (2400mA) USB charging port will not damage it, the device will only draw as much power as needed.
USB Battery Charging Standard
Some devices support the USB Battery Charging (BC 1.1/1.2) standard, but that support is usually undocumented. Charging behavior is often learned through trial-and-error. With the addition of BC 1.2, the USB standard included three port types.
- Standard Downstream Port (SDP) - Data-only port with no special charging capabilities. Provides data connectivity and the standard 500mA to downstream devices.
- Charging Downstream Port (CDP) - Simultaneous USB data connectivity and high-current charging. Provides up to 1.5A to downstream devices. Has a charging detection phase that triggers device charging, then switches over to data mode after charging has been established.
- Dedicated Charging Port (DCP) - Charging-only port with no data connection. Provides up to 1.5A to downstream devices. This signal simply shorts the data D+ and D- lines.
Proprietary Signals
Many manufacturers created their own DCP signals to either provide higher charging rates or only charge from “authorized” chargers. iPads, for example, can draw up to 2.4A when connected to an Apple computer or Apple charger, but they will not charge at all when connected to a regular USB port.
Apple
Apple was among the first manufacturers to create their own charging signals to meet the needs of their power-hungry mobile devices.
- Apple 2.4A: 2.7V D+, 2.7V D-
- Apple 2.1A: 2V D+, 2.7V D-
- Apple 1A: 2.7V D+, 2V D-
- Apple 500mA: 2V D+, 2V D-
Signal | D+ Volts | D- Volts |
Apple 2.4A | 2.7V | 2.7V |
Apple 2.1A |
2V | 2.7V |
Apple 1A |
2.7V |
2V |
Apple 500mA |
2V |
2V |
Samsung
Many legacy Samsung devices use the standard BC 1.2 charging standard for DCP, CDP, and SDP modes. Even older devices often used a proprietary Samsung DCP signal (1.2V D+, 1.2V D-)
Qualcomm Quick Charge (QC) 1/2/3
Legacy Qualcomm QC chargers are capable of outputting much higher power than standard USB chargers. These signals are specifically designed to work with mobile devices containing Qualcomm Snapdragon SoC chips. This standard is often re-branded by manufacturers for marketing purposes, but the standard behind these technologies is Qualcomm QC. A few well-known rebrands of Qualcomm QC are listed below. Currently, Plugable does not offer any QC devices.
- Samsung Adaptive Fast Charger
- Oppo Super VOOC
- OnePlus WarpCharge (Note: There are several implementations of WarpCharge that have evolved with new devices, some being fully OnePlus proprietary offering up to 65W.)
- Huawei SuperCharge
QC chargers output various voltages based on the signals sent over the data lines from the powered device.
Output Volts (Vcc) | D+ Volts | D- Volts |
5V |
0.6V |
GND |
9V |
3.3V |
0.6V |
12V |
0.6V |
0.6V |
20V |
3.3V |
3.3V |
"Smart" Charging
Smart chargers contain a charging controller chip that attempts to detect the ideal signal for the attached downstream device. Once the ideal signal is detected, the charger will stop cycling through signals and the powered device will start charging.