Please see the compatibility tab for more information on which devices can best make use of this dock.
List Price : $350 $272
Amazon Rating :
(222 Reviews)
Features
The TBT3-UDZ is Plugable’s most versatile, powerful and accessible docking station yet. Its unique, exclusive design allows users to connect up to two 4K displays using either HDMI or DisplayPort without the need of external adapters - the first Thunderbolt 3 docking station to offer this flexibility of display types. Using the Intel Titan Ridge chipset and Plugable's custom design, the TBT3-UDZ delivers a combination of more port options, fastest charging up to 100W, and widest PC and Mac compatibility of any dock on the market.
With this dock, we set out to solve customer pain points that users have been dealing with for a long time now. These include the difference between Thunderbolt 3 and USB-C, which have identical looking ports, HDMI versus DisplayPort, USB-C or USB-A peripheral ports, and the different levels of charging wattage offered. The TBT3-UDZ eliminates any confusion between these different types of technologies by offering a simplified solution that answers these questions for you.
Plugable's unique design allows users to connect up to two additional 4K displays with your port of choice using either HDMI or DisplayPort without the need of external adapters.
This is the first Thunderbolt 3 docking station to offer this flexibility of display types. Made to adapt to the user's setup, the TBT3-UDZ is unparalleled in flexibility.
The horizontal or vertical design of the TBT3-UDZ goes against the grain of other docking stations. Fit the dock in any space standing up or lying flat so there's more room for monitors and peripherals, while keeping a productive and clean workspace.
The dock includes a sturdy, detachable base for vertical orientation, which ensures a stable, sturdy setup no matter how many cables you connect.
The TBT3-UDZ is built upon the latest Intel Titan Ridge chipset, enabling the widest compatibility with Thunderbolt 3 and USB-C laptops on the market. Its dual connectivity removes frustrations from having to pick a docking station for either type of laptop while delivering unrivaled performance.
The TBT3-UDZ’s 100W* Power Delivery is the highest charging wattage to be implemented in any universal Thunderbolt 3 docking station. With Apple now releasing notebooks with 96W chargers, such as the new 16” MacBook Pro, the TBT3-UDZ is the best docking station to pair with these devices for unrivaled performance.
Charge your laptop at noticeably faster speeds - so you’ll have one less thing to think about and you can say goodbye to your other power supply.
*To strictly comply with 100W regulatory limits with margin, Thunderbolt certification limits to charging to 96W.
Expand your workspace with 40Gbps Thunderbolt speeds and drive any combination of two DisplayPort or HDMI monitors. two DisplayPort or HDMI monitors.
When connected to a compatible Thunderbolt 3 Mac* and Windows systems:
When connected to a compatible USB-C system:
The docking station features 14 ports making it one of the most comprehensive docking stations available, ideal for the most demanding of professions that require multiple inputs and peripherals.
With a mix of five USB 3.0 (5Gbps), one USB-A (10Gbps) and one USB-C (10Gbps) ports, you’ll be able to connect your phone or USB flash drive to the easily accessible front USB and USB-C ports, then connect other USB peripherals such as a keyboard or mouse to the back of the dock.
Note: The USB-C port on the front of the dock supports data transfer only (no video). When connected to a USB-C laptop the front USB-C and USB-A port may be limited to 5Gbps depending on host specifications.
Please see the compatibility tab for more information on which devices can best make use of this dock.
Item and Quantity | Item Notes |
---|---|
1x Plugable TBT3-UDZ Thunderbolt 3 and USB-C Dual Display Dock with 96W Host Charging | |
1x Quick Start Guide | |
1x Power supply | |
1x Power cable | |
1x Vertical stand | |
1x 0.8m 40 Gbps Thunderbolt 3 Cable |
Port | Placement | Specification | Max Resolution and Refresh Rate | HDCP | Chipset |
---|---|---|---|---|---|
2x DisplayPort (Output) |
Rear | DisplayPort 1.2 | 3840x2160 @ 60Hz 4096x2160 @ 60Hz3840x1600 @ 60Hz 3440x1440 @ 60Hz 2560x2160 @ 60Hz 1920x1080 @ 60Hz 1600x900 @ 60Hz 1280x1024 @ 60Hz 1280x800 @ 60Hz 1280x720 @ 60Hz 1152x864 @ 60Hz 1024x768 @ 60Hz 800x600 @ 60Hz 640x480 @ 60Hz |
Supported | |
2x HDMI 4K (Output) |
Rear | HDMI 2.0 | 3840x2160 @ 60Hz 4096x2160 @ 60Hz3840x1600 @ 60Hz 3440x1440 @ 60Hz 2560x2160 @ 60Hz 1920x1080 @ 60Hz 1600x900 @ 60Hz 1280x1024 @ 60Hz 1280x800 @ 60Hz 1280x720 @ 60Hz 1152x864 @ 60Hz 1024x768 @ 60Hz 800x600 @ 60Hz 640x480 @ 60Hz |
Supported |
Port | Placement | Connection | Max Bit Depth and Sample Rate | Signal Output | Channels | Chipset |
---|---|---|---|---|---|---|
Headset Jack Bi-Directional |
Front | 3.5mm (TRRS) | 16-bit 48KHz | Analog | 2 | |
HDMI 4K Output |
Rear | DisplayPort | Host Dependent | Digital | Host Dependent |
Port | Placement | Power Host / Device | Connection Type | Notes | Voltage | Amperage | Wattage |
---|---|---|---|---|---|---|---|
Thunderbolt™ 3 to Host | Rear | Host | USB-C Power Delivery | 20.0V | 4.8A | 96.0W | |
Power Supply | Rear | Device | Region-specific Power Adapter | UL 60950-1 Certified | 20.0V | 8.5A | 170.0W |
Port | Placement | Version and Link Rate | Features | Voltage | Amperage | Wattage |
---|---|---|---|---|---|---|
5x USB-A | Rear | USB 3.0 (5Gbps) | 5V | 900mA | 4.5W | |
1x USB-A | Front | USB 3.2 Gen 2 (10Gbps) | Battery Charging 1.2 | 5V | 1500mA | 7.5W |
1x USB-C | Front | USB 3.2 Gen 2 (10Gbps) | 5V | 1500mA | 7.5W |
Port | Placement | Version and Link Rate | Features |
---|---|---|---|
1x Thunderbolt™ 3 | Rear | Thunderbolt™ 3 (40Gbps) |
Port | Placement | Version and Link Rate | Features | Chipset |
---|---|---|---|---|
Gigabit Ethernet | Rear | 1000BASE-T | Wake-on-LAN (WoL) or Energy-Efficient Ethernet (EEE) or 9K Jumbo Frames | RTL8153 Realtek |
Storage Port Location | Host Connection | Host Connecton Port Specification | Fixed or Detachable Cable | Slot and Media Type | Capacity (If Media Included) or Max Supported Capacity | Chipset |
---|---|---|---|---|---|---|
Slot 1 | MicroSD (Trans-Flash) or
MicroSDHC or
MicroSDXC Micro SD |
GL3226 Genesys Logic |
||||
Slot 2 | SD or
SDHC or
SDXC or
MMC or
RSMMC or
Mobile-MMC or
MMCPlus or
MMC-micro SD or
SDHC or
SDXC or
MMC |
GL3226 Genesys Logic |
Port Type (Side 1) | Cable Specification | Port Type (Side 2) | Cable Length | External Power for Cable |
---|---|---|---|---|
1x Male Thunderbolt™ 3 | Thunderbolt™ 3 (40Gbps) | 1x Male Thunderbolt™ 3 | 0.8m/2.6ft |
Thunderbolt 3 Platforms:
USB-C Platforms with Alt Mode:
Important notes:
When connected to Thunderbolt 3 Mac and compatible Windows systems:
When connected to a compatible USB-C Windows or Mac system (without Thunderbolt 3):
Supported features on compatible USB-C hosts:
Important Note for Windows System: Thunderbolt 3 includes advanced security features to help keep your system safe. On Windows systems, Thunderbolt devices must be authenticated ("approved") when they are attached to a Thunderbolt 3 host system for the first time. (This security is already built-in to macOS without the need for these steps.)
Questions? We're here to help! Please reach out to us at support@plugable.com
USB-A
pietz, CC BY-SA 3.0 , via Wikimedia Commons
This is the standard USB connection that most computers offered prior to the introduction of USB Type-C (USB-C). Even after the introduction of USB Type-C, this is still quite common.
It can provide data transfer rates up to the USB 3.1 Gen 2 (10 gbps) specification depending on the host and device, but does not directly support video in the way that USB-C Alternate Mode does. This limitation makes DisplayLink USB graphics adapters and docking stations ideal on systems that do not have USB-C, or in instances where more displays are needed beyond available video outputs of a PC.
USB-B
Fred the Oyster, CC BY-SA 4.0 , via Wikimedia Commons
IngenieroLoco, CC BY-SA 4.0, via Wikimedia Commons
This type of connection comes in a couple different styles depending on whether USB 3.0 and higher transfer rates are supported (bottom graphic). Usually this type of connection is used to plug into USB devices that do not have a fixed cable connected, such as USB docking stations, USB hubs, printers, and others.
USB Mini-B
Fred the Oyster, CC BY-SA 4.0 , via Wikimedia Commons
One of the first connectors for charging a smartphone, wireless game controller (such as the Sixaxis and DualShock 3), and other small devices such as external hard drives. Not commonly used today, but is still used in some cases. Most devices using USB Mini B are using USB 2.0, though a USB 3.0 variant does exist. This specification also added USB On-The-Go (OTG) functionality, though it is more commonly implemented with Micro USB.
USB Micro-B
Fred the Oyster, CC BY-SA 4.0, via Wikimedia Commons
IngenieroLoco, CC BY-SA 4.0 , via Wikimedia Commons
A smaller connector that serves many of the same uses as the Mini B connector, with added optional features such as Mobile High-Definition Link (MHL) to allow devices like smartphones to output video to larger displays without requiring a dedicated port for video output.
The larger variant of USB-B is most commonly used for external hard drives for higher 5Gbps transfer rates.
USB-C, Thunderbolt™ 3, and Thunderbolt™ 4
Niridya , CC0, via Wikimedia Commons
The most recent USB connection, USB Type-C (USB-C), represents a major change in what USB can do. The connector is smaller, can be connected in two orientations, is able to carry substantially more power and data, and can directly carry video signals of multiple types (HDMI, DisplayPort, etc.) Intel has also adapted the USB-C connector for use with Thunderbolt 3 and Thunderbolt 4.
It is important to note that while all Thunderbolt 3 and Thunderbolt 4 connections are USB-C, not all USB-C connections can be used with Thunderbolt 3 or Thunderbolt 4 devices.
More details regarding physical USB connections can be found on Wikipedia . The graphics depicted here are adapted from Wikimedia Commons by various artists under the Creative Commons Attribution-Share Alike 3.0 Unported license.
Synopsis – If your Thunderbolt 3 driver or utility version types are mismatched within a Windows host system, you may receive an error message stating, “Application Cannot run – This Thunderbolt application is not in use anymore and can be safely uninstalled” when attempting to run the Intel Thunderbolt Software management utility or the Intel Thunderbolt Control Center utility. This prevents proper management of Thunderbolt devices on the host system. (This problem does not occur on Apple Mac systems.)
Before proceeding with this or any other procedure that makes changes to your system, please ensure you have a full system backup of any and all important data and create a fresh System Restore Point as a precaution. Plugable will not be able to help restore any data or return a system to a working state should things not work as expected. If you do not wish to take this risk, please do not follow this procedure
You will have to be logged on to the system as a User with ‘Administrator’ permissions in order to perform these steps
1. Disconnect any Thunderbolt 3 devices from the host system (this is done to prevent Windows Update from automatically loading any Thunderbolt drivers).
2. Right-click on the Windows Start button and select ‘Device Manager’.
3. Click on ‘View’ from the application menu bar, and click the option ‘Show hidden devices’ (this is necessary because the Thunderbolt controller will not be active if no Thunderbolt devices are connected).
4. Expand the ‘System Devices’ category. Scroll down until you find the entry for the ‘Thunderbolt Controller’.
5. Right-click on the ‘Thunderbolt Controller’ entry and select ‘Uninstall device’ from the context menu that appears.
6. From the ‘Uninstall Device’ window that appears, click to place a check mark within the ‘Delete the driver software for this device’ option.
7. Click the ‘Uninstall’ button.
8. Close Device Manager.
9. Click the search button on the taskbar (looks like a ‘O’) and search for the letters ‘cmd’.
10. Right-click on the ‘Command Prompt’ search result and select ‘Run as Administrator’ from the context menu. If prompted, enter your Administrator password.
11. From the Administrative Command Prompt window, enter ‘sc delete nhi’ (without the quotes) and press enter. You should receive a ‘SUCCESS’ indicator. ** Be very careful to type this command correctly **
This command deletes the ‘nhi’ Windows service presently installed on the system.
In general, Plugable Thunderbolt 3 Docking Stations and Thunderbolt 3 Dual Display Adapters do not require the installation of any drivers when used with macOS or Windows. When connecting a Thunderbolt 3 device, the host operating system should install all the necessary drivers automatically.
However, there are certain instances with Windows systems where additional driver installation may be necessary when using our Thunderbolt 3 docking stations (these are NOT required on macOS systems):
TBT3-UDV Docking Station:
TBT3-UD1-83 / TBT3-UD1-85 Docking Stations:
Before purchasing or using a new Thunderbolt™ 3 docking station or video adapter for use with your personal computer running Windows, you will want to make sure that your computer can support it and be aware of differences from basic USB devices:
Note: The following does not apply to Apple Thunderbolt 3 systems.
Thunderbolt 3 technology is supported by any operating system which has driver support for Thunderbolt 3. Currently, Plugable supports Windows 10, 8.1, and 7 (64-bit only) and macOS 10.13 or later. Although support for Thunderbolt 3 devices under Linux is steadily evolving, Plugable does not support Thunderbolt 3 devices within a Linux environment at this time.
Click here for this process.
Q: Can a Thunderbolt 3 dock or adapter work in any system with any USB-C (USB Type C) port?
A: It depends.
Q: How can I identify the NVM version on my system?
A: See “Identifying the NVM” section below.
Q: What if a newer compatible NVM is not available from my system manufacturer?
A: Unfortunately the only option is to contact your system manufacturer and ask when a newer version will be available, and to let them know that until it is, certain accessories you are looking to use will not work.
Q: How can I identify if my system has the necessary two DisplayPort lines to provide dual display output through the Thunderbolt 3 port?
A: Unfortunately in many cases this information is very hard to discern based on the manufacturers published specifications. If your system is not among those listed in our compatibility table above, please contact your system manufacturer for confirmation of how many DisplayPort lines are routed to your Thunderbolt 3 port.
Q: I connected my Thunderbolt 3 dual display adapter and my monitor configuration changed by itself.
A: This may occur and is considered normal. You can change the main display back to your desired screen through the “Display settings” control panel.
Q: I connected my Thunderbolt 3 dual display adapter and am only getting a single output.
A: Depending on what Thunderbolt 3 equipped system you have, it may only support a single output because of the DP Alt Mode line configuration. See above “Known Host NVM Versions & DP Lines” to find out if your system has one or two lines.
Q: I connected my Thunderbolt 3 dual display adapter for the first time and my system crashed (hard lock).
A: Check to see if your system is running the latest Thunderbolt 3 software, NVM, UEFI BIOS, and all other updates from your system manufacturer. If everything is updated, unplug the adapter, reboot the system, and then reconnect.
Q: I connected my Thunderbolt 3 dual display adapter and am not getting any output to either display.
A: If your system has hybrid graphics (combination of built-in Intel GPU and AMD or NVIDIA discreet graphics) make sure the Intel GPU is set to be the primary GPU in the UEFI BIOS.
If you have any questions feel free to contact our support team, we’re more than happy to help!
Thunderbolt and the Thunderbolt logo are trademarks of Intel Corporation in the U.S. and/or other countries.
Windows systems need to have newly attached Thunderbolt 3 devices authenticated before they can be used. For most computers this process needs to be performed manually through the Legacy Thunderbolt utility installed on your computer. Newer Windows host systems (around November 2018 and newer) may be using an updated driver model, Declarative C
Below we will cover both methods of authentication as well as how to check NVM on older systems to see if an update is required. These processes may vary depending on how the host system Thunderbolt security level is configured in the UEFI BIOS, however, most systems will be set for user authorization or secure connect.
When first connecting a Thunderbolt 3 device to a Windows system, the device must first be authenticated through Intel’s Thunderbolt 3 software. After connecting a Thunderbolt 3 device the first thing that you should see (assuming that the system NVM, UEFI BIOS, drivers, etc are up to date and compatible) is an automatic notification above the system tray notifying you that a new device has been attached. You will want to click OK:
After clicking OK, you may get a Windows User Account Control (UAC) popup asking if you “want to allow this app to make changes to your PC?”. Click Yes:
After clicking yes you should see an application window appear where you will approve the Thunderbolt 3 device that was just attached:
Click on the drop down menu where it says “Do Not Connect” and select “Always Connect”. Then click OK:
To view and manage the approved devices you can find the program sitting in the system tray. You may need to click the caret (up arrow icon) to show all of the running programs then right click on the Thunderbolt icon it and select Manage Approved Devices:
You may again get a Windows UAC prompt, click yes. After clicking yes the below window will open and you can see any approved devices and remove them if you choose.
For systems running the DCH version of the Thunderbolt 3 drivers and the Windows Store Thunderbolt Control Center app, many newer hosts will automatically authenticate the attached device using secure connect. For systems where your attached Thunderbolt 3 device is not authenticated automatically via secure connect you can authenticate the device manually. Start by searching the start menu for Thunderbolt and selecting the Thunderbolt Control Center:
Here you should see your attached device:
To approve the device click on the menu button (three horizontal lines) and then click “Approve devices”:
Next you can select “Always connect” and then press “OK” at the bottom of the application:
Your device should then automatically be approved the next time it is attached.
How do I check which version of Thunderbolt 3 software and NVM firmware I am running in Windows?
To determine what version of NVM firmware your system has, the first step is to ensure you have the latest Thunderbolt software version which varies depending on the system manufacturer. You should be able to download it from your system manufacturer’s website.
Once installed you can open the software by searching the start menu for Thunderbolt:
Once open you can find the program sitting in the system tray. You may need to click the caret (up arrow icon) to show all of the running programs then right click on the Thunderbolt icon and select Settings:
Now you should see the settings window. Click on Details to find out all of the Thunderbolt software and controller information:
If a Thunderbolt 3 device has been connected to the system the Thunderbolt software will show you information about the controller. Below you can see the details from our Dell XPS 13 9350 system:
Unfortunately if a Thunderbolt device has not yet been connected to the system, the information about the NVM firmware may not be available within the utility:
If you have any questions feel free to contact our support team, we’re more than happy to help!
Thunderbolt and the Thunderbolt logo are trademarks of Intel Corporation in the U.S. and/or other countries.
No. Currently, Apple M1-based MacBook systems (non-Intel processors) only support a single external display. This limitation is a result of computer itself, and not the device. Any Thunderbolt 3 dock or graphics adapter shares this same display restriction (Plugable-branded or otherwise).
For adding additional displays to M1 Macs, the single display restriction can be worked around through the use of a USB graphics solution such as DisplayLink. Please refer to DisplayLink-based docks such as our UD-3900PDZ for more display support.
More details can be found below:
No, this is not possible. Please note that DisplayPort to HDMI cables (as with any cable involving protocol/signal conversion) are not bidirectional adapters. Such cables will not allow an HDMI output port (such as those on the dock) to function with a DisplayPort input on a monitor.
IEC power requirements for this class of device require that charging via USB not exceed 100W peak charge rate for more than 5 seconds, and so Thunderbolt certification requires a 4W margin to maintain this IEC compliance. Because charging output from any device will always have some amount of variance, implementing a 96W Power Delivery profile combined with robust circuit design ensures the TBT3-UDZ will meet these requirements and achieve 96W sustained charging, with a peak rate of 100W. We are unaware of any real-world scenarios where this will affect charging behavior, but will certainly provide updates if we learn of any edge cases.
Computer networking is a complex topic. In this article, we'll be taking a deep dive on the nuances of network performance for those who need some additional explanation while striving to be concise, and to educate users of various experience levels relating computer hardware and computer networking.
If you just need to know how to perform a network performance test/benchmark, jump down to configuring iPerf.
With regards to network performance, it is crucial to first separate whether an issue is with Wide Area Network (WAN) performance, or if the issue is with Local Area Network (LAN) performance.
Your LAN is essentially the network inside your home or business. Many homes use a combination modem/router device provided by their Internet Service Provider (ISP). In some cases, especially in businesses, you may have a separate modem and router, along with other equipment connecting to the router such as a network switch.
Your modem, and the connection it establishes to your ISP—whether through coaxial cable, fiber, phone lines, or long-range wireless—essentially marks the point between the WAN and the LAN. The connection your modem makes to your ISP is the WAN, and any devices you connect through your router behind that modem belong to the LAN.
Almost every type of connection your computer makes to any piece of hardware will have a link rate of some kind. The link rate establishes how fast data can possibly be transferred across any given connection, but it does not guarantee how fast the hardware on either end of the connection will actually transfer data.
The concept of link rates, and their related bottlenecks, is likely best conveyed by giving an example of what connections might be involved in transferring a file from one computer on your LAN to another.
Following this chain, we see that 300Mbps is the slowest link rate established. This means that, regardless of the link rates established elsewhere, the absolute maximum the data can possibly be transferred is 300Mbps.
if we were to change the Wi-Fi connection to a wired Ethernet connection capable of 1Gbps, our performance bottleneck would then become the USB 2.0 connection to the USB drive where the file is stored.
A network interface represents connections, whether wired or wireless, that are made to form a network between devices.
Some may refer to physical hardware connections as "ports". For the purposes of networking, ports are logical constructs that can also be referred to as "network ports". Each network interface has 65,535 of these logical ports. Each port on a network interface is a separate data connection.
To properly benchmark network adapter performance, we need to:
Websites like speedtest.net, fast.com, and other performance tools in your web browser are going to use your WAN connection, and are not appropriate for determining if a network adapter is working well.
Transferring files from one computer to another on your LAN is typically not the best way to benchmark a network adapter. File transfers are bottlenecked by a number of things, including performance limitations of the disk the data is on, and often times a lack of establishing parallel network connections to perform the task.
One of the most accurate ways to benchmark network performance on a LAN is by using iPerf . To more effectively benchmark network adapter performance, it is best to establish a point-to-point connection between two PCs, rather than connecting through a router or switch.
To test a connection using iPerf, you'll need at least two network interfaces, and preferably two computers. You'll also need to know the IP (Internet Protocol) address assigned to each network interface . One network interface will function as an iPerf server, and the other network interface will function as an iPerf client. Lastly, you'll need to download the version of iPerf 3.x that's appropriate for your computer's operating system and extract/install it .
cmd
in the window that appearsCommand Prompt
, and open itcd
command is for 'change directory'cd %USERPROFILE%\Desktop\iperf
iperf3.exe -s
iperf3 -s
apt
:sudo apt install iperf3
iperf3 -s
Next, you'll need to run iPerf in client mode, targeting the IP address of the server/interface where iPerf is running in server mode. Additionally, we'll run the test for 30 seconds using -t 30
and with four parallel connections using -P 4
. Running 4 parallel connections is optimal for saturating a network link.
cmd
in the window that appearsCommand Prompt
, and open itcd
command is for 'change directory'cd %USERPROFILE%\Desktop\iperf
iperf3.exe -c 192.168.0.200 -t 30 -P 4
iperf3 -c 192.168.0.200 -t 30 -P 4
iPerf should start performing a network performance test. If the test fails to start, make sure that iPerf is not being blocked by your PC's/Mac's firewall.
Unlike a file transfer, iPerf runs in memory on the PC and generates data to send using the CPU directly. This alleviates potential bottlenecks generated by storage devices, and allows you to explicitly control how many parallel connections are being used to transfer data rather than being unsure if parallel network connections are being used by other means.
There's a lot more to networking that isn't covered in this article, but we hope this helps explain enough to get an accurate measure of your network performance.
If you need assistance with your Plugable product that features network connectivity, please contact us for further assistance.
Whether you're on Windows, macOS, or Linux, it's common to add new audio devices to your computer.
Some examples of additional audio devices you may want to switch to include:
These steps don't apply to the Plugable Performance NIX HDMI Capture Card (USBC-CAP60).
Here are the steps that you need to set a new default audio recording or output device on different operating systems.
Set Default Playback Device in Windows
Please see our pairing and configuration guide for Bluetooth devices.
Set Default Playback Device in macOS
Set Default Playback Device in Linux
Set Default Recording Device in Windows
Please see our pairing and configuration guide for Bluetooth devices.
Set Default Recording Device in macOS
Set Default Recording Device in Linux
Windows has special power management settings that control what happens when the laptop lid is closed. If this happening, these settings need to be changed. Please right-click on the Start button and select ‘Power Options’ from the menu.
From the choices present on the left-hand side of the 'Power Options' window, please click on ‘Choose what closing the lid does’.
** Important note – if you are running the Creators Update (or newer) to Windows 10, you will have to first click on the ‘Additional power settings’ option to access this window **
Make sure the setting for ‘When I close the lid’ under the ‘Plugged In’ column is set to ‘Do Nothing’.
Click the ‘Save Changes’ button and restart the system (making sure that the laptop’s power adapter is also connected) and test the behavior again.
No, the front USB-C port on the TBT3-UDZ is for data only and does not support USB-C VESA DisplayPort Alternate Mode video output. Displays attached through this dock must be connected to the rear HDMI or DisplayPorts.
No, the front USB-C port on the TBT3-UDZ supports standard USB 3.x 900mA (4.5W) power output. The only USB port on this dock capable of charging a device like a phone or tablet is the front USB-A port which can offer 1.5A (7.5W) via the BC 1.2 CDP charging standard.
No, the TBT3-UDZ supports a maximum of two monitors via "Display 1" and "Display 2" video output "banks" in the following configurations:
For additional details about supported displays, see here: https://kb.plugable.com/en_US/docking-stations-and-video/what-are-the-display-output-capabilities-for-the-tbt3-udz
For Thunderbolt 3 systems:
Some systems with Thunderbolt 3 support may only have the ability to connect a single display through the Thunderbolt 3 port. This is due to how the system manufacturer has configured the internal circuitry of the computer between the system graphics card and the system Thunderbolt 3 controller. To be specific, they have only routed one DisplayPort video line from the graphics card to the TBT3 controller.
As an example of this, many Intel NUC systems only support a single display, see here for reference: https://www.intel.com/content/www/us/en/support/articles/000021752/intel-nuc.html
We also see this configuration on many high end gaming laptops or desktop replacement workstation laptops that have one or more dedicated onboard video outputs. Unfortunately, this is often undocumented and you may need to contact your system manufacture to verify if they expect dual monitors will be supported over Thunderbolt 3.
Apple M1 based Macs (MacBook Air, Mac Mini, and MacBook Pro) only support a single display through Thunderbolt 3 or USB-C. (This is a limitation of the M1 graphics card design.)
For USB-C systems:
Apple USB-C only systems (without Thunderbolt 3 support) like the 2015 MacBook Retina 12" can only support a single display or will show two screens with mirrored images. This is because Apple does not support DisplayPort MST (multi-stream) which our dock uses to take a single USB-C DisplayPort Alternate Mode video line and connect two displays through it.
Windows USB-C systems should support MST in most cases, if you're only able to connect a single display, please contact us via support@plugable.com for further assistance.
Based on customer reports and information online found after this update, it appears that there is a regression in macOS Big Sur 11.1 that is causing video output issues through Thunderbolt 3 devices like our dock such as only a single display works versus two working prior with macOS Big Sur 11.0.1, or video resolutions and/or refresh rates are incorrect (example: only 4K @ 30Hz possible vs expected 4K @ 60Hz).
We encourage you to report these issue to Apple using their feedback form located here: https://www.apple.com/feedback/macos.html
Unfortunately, to resolve this issue you'll need to restore to a previous backup of your system if available for macOS Big Sur 11.0.1 or wait until the next update from Apple.
There is a known issue with the Apple provided built in macOS Ethernet drivers for the Realtek RTL8153 USB 3.0 Ethernet chipset used in our dock (and many other docks and USB Ethernet adapters on the market). When put to sleep, the problematic driver creates an Ethernet broadcast storm which can overwhelm some Ethernet routers.
For macOS Catalina 10.15.x users, please contact us via support@plugable.com and we can provide you with an updated driver and installation instructions.
For macOS Big Sur 11.x users, at this time there is no updated driver available due to Apple's change in driver models from "KEXT" to "DEXT". Realtek is currently developing new drivers to support this new macOS version. For now, we recommend to disable your Mac from sleeping to prevent this issue, or use WiFi instead of Ethernet until the new driver is available. Feel free to contact us via support@plugable.com and we'll be happy to notify you once updated drivers are available.
For Thunderbolt 3 systems a longer cable can be used, but there are some important factors to consider. The longest passive Thunderbolt 3 cable rated for 40Gbps (required for dual displays via TBT3) at this time is already included and is 0.8m in length. Longer cables will need to be active cables. We don't sell any active cables but they are available at up to two meters.
For users with USB-C only systems a Thunderbolt 3 cable is not required. Instead, a longer USB 3.1 Gen 2 cable rated for 10Gbps can be used. We recommend no longer than 2m in length. However, due to the varying quality of USB-C cables on the market, a better alternative would be a 2m 20Gbps passive Thunderbolt 3 cable like our TBT3-20G2M: http://plugable.com/products/tbt3-20g2m
We have been tracking reported issues where externally connected USB devices and internal USB devices within the TBT3-UDZ docking station (Ethernet, audio, and card reader) may not be detected after waking the system from sleep or after rebooting on some macOS systems. Some users may also experience one or both displays attached to the dock not waking as well.
If experiencing issues with the Ethernet only, please see: https://kb.plugable.com/en_US/docking-stations-and-video/when-i-put-my-mac-to-sleep-it-causes-my-entire-network-to-stop-functioning
To begin troubleshooting USB device and/or display issues, if using an Intel based Mac we recommend the following steps:
If these initial troubleshooting steps do not help, please contact us at support@plugable.com and we'll be happy to assist you.
For Intel based MacBook Pro models with four Thunderbolt 3 ports, some users have found connecting the dock to the left or right side to be more stable than the other. Due to some variance in MacBook designs, we've found it is best to experiment with your particular setup to find what works well for you. With that said, there are some specific situations where a particular side may be inherently better:
1) Older MacBook Pro models have had varying capabilities depending on the side used:
2) It has been suggested for 16" MacBook Pro owners to connect to the right side for the best performance. ExtremeTech has a great article about why this is here: http://extremetech.com/computing/309802-charging-a-macbook-on-the-wrong-side-can-significantly-lower-its-performance
3) It is also worth mentioning that per side of Thunderbolt 3 MacBooks, a maximum of two displays are supported. If using the dock on one side of the system for two displays, another display cannot be connected to the second Thunderbolt 3 port on that same side (this means Intel based MacBook Pros with only two ports will support only two displays).
Thunderbolt 3 MacBook Pros with four ports (two on each side) can support either two or four displays maximum depending on the system configuration. Intel graphics based four port models are limited to two displays only whereas AMD based graphics four port models can support four displays.
Example: You want to connect three or four displays to your four port AMD graphics based MacBook Pro, you will need to connect the dock to one side for two displays and the third or fourth displays must be connected to the opposite side of the system.
Note: Currently, M1 based Macs (MacBook Air, Mac Mini, and MacBook Pro) only support a single display through Thunderbolt 3 or USB-C. This is a limitation of the M1 graphics card design.
Please feel free to contact us at support@plugable.com if you have any questions!
The TBT3-UDZ docking station offers two primary modes to output video to attached displays via the dual HDMI 2.0 and dual DisplayPort 1.2 outputs: Thunderbolt 3 mode and USB-C DisplayPort Alternate mode.
Systems with Thunderbolt 3 support and USB-C only systems without Thunderbolt 3 support will have differing capabilities. In addition, some Thunderbolt 3 systems may only support a single display and some USB-C only systems may lack USB-C DisplayPort Alternate Mode video output entirely (no displays will work).
In either TBT3 or USB-C DP Alt modes, a maximum of two displays are supported and can be connected in any combination of HDMI + HDMI, DP + DP, or a mix of HDMI + DP to the "Display 1" and "Display 2" output groups. See below for more details:
Multiple display capabilities for Thunderbolt 3 systems:
Multiple display capabilities for USB-C only systems (no Thunderbolt 3 support, operating in USB-C MFDP (Multifunction DisplayPort) mode):
Important Notes:
If you have any questions please feel free to contact us at support@plugable.com and we'll be happy to assist!